


Missions & Sealing Elements 
Missions: 
• Mission to ISS: 210 days long, taking 

place over the next 10 years. 
• Lunar Sortie mission: 31 days long, 

docking to Altair. 
• Lunar Outpost mission : 210 days long 

Sealing Elements: 
• CEV side (rubber): 

- Parker (Primary) or Esterline (Alternate) 

• Flange side (aluminum): ISS or Altair 

Parker Gask-O-Seal 
S0383-70 compound 

Esterline/NASA 2-Piece Seal 
ELA-SA-401 compound 
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Flow Chart of Method Develo~ment: 
Effect of MMOD Threats on LIDS Seal Design 

Define ISS and 
Lunar Missions 

\ 

Determine critical Determine cumulative Evaluate impact-
MMOD particle probabili ty of seal response of key Obtain Project 
energy that cause ~ failure due to MMOD seal design f----';> Risk Allocations -
seal failure (BUMPER) parameters for LIDS (PNML) 
(WSTF,ORC) (WSTF,ORC) 

Define Suitable Determine Risk Combine inputs from previous 

Areas and Mission Sub-allotments for steps to assess di fferent candidate 

Times for LIDS LIDS Seals 
seal designs relative to project 1 defmed seal risk allotment 

and Seals (PNML=XAT ) 
Arrive at seal 
design that meets 
MMODrisk 

Ke~: allotments 
.. = = PNML. Probability of No MIssion Loss, T time, A Area 

WSTF: White Sands Test Facility 
BUMPER: Computer Code used to assess probability of MMOD impact/failure 

3 



Experi mental Investigations 



Seal S ecimens and How The Were Paired 

• Primary Design: 
Parker washer style seal rings, 
5.1 mm wide (0.2"), and 
2.5 mm (0.1") wide against 
anodized aluminum 

• Alternate Design: Esterline seal rings 
9.1 mm (0.36") wide against anodized 
aluminum. 

• Aluminum, 6061 T651 , with either Parker 
or Esterline seal rings. 

• Seals were not available for this phase of MMOD studies 
• "Surrogate" elastomer seal rings of proper width and height cut from elastomer sheet 
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Image of Hypervelocity Impact at WSTF: Elastomer 

Test parameters: Particle: AI sphere 0.48 mg, 0.7 
mm dia. , 8.17 km/s, 0° angle 

Target: Parker S0383-70; 5.1 mm (middle right) 

CT scan of resulting crater (lower right) 

Finding: Leakage same as undamaged seal 
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Measuring Impact Damage 

Aluminum Flange: 
• Crater hole diameter in 

Aluminum: inner diameter, 
near inflection point; outer 
diameter. Crown Height, h. 

• Of = (dfi + dfo)/2 

.. ds .. I Elastomer: ..... 

Crater hole diameter in ---:-::":""'nA. -:~:­
Elastomer: . . 

• dv = dia. of vaporized hole; .~............. . ......... .: d 
• ds = dia. of secondary .......... \......... C 

damage; 

• de = dia. of radial cracks. 

• 0Seal = (dv + d s + de )/3 

"'" . 
"" ,," ... " .. ,,",," 

• Measured values for craters in flange (Of) and elastomer (Oseal ) correlated with 
particle Kinetic Energy for subsequent design calculations 
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Parker Seal Ring Damage Dependence on Hit Location 

Damage to the elastomers dependent on hit location 

• Impacts near the center-line (c-c = 0) are most damaging as shown by 
hits of similar kinetic energy: 

2,2 

§ 
.... n 1.8 -f------':~==::::::::::'=----7"'~-------=-~----
Q.l 

~ 

~ 1.4 +---------/-'--------- --------.-"0 
.... 
~ 1 +---~---------------­
U 

Q.l 
~ 0,6 

-1.5 -1 -0.5 o 0.5 1 1. 

c-c, Distance between crater and seal centerline, mm 

'" . 
...... 

c-c = 0 

Seal ID 

Crater in Seal Ring 
("c-c defined as positive if crater 
"outside" seal centerline) 
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Leak Testing Damaged Seal Rings and Plates 

Bath 

Gas Test Section 

"'rp"~lIre Barometric 
Transducers Pressure 

Esterline ELA-SA-401 seal ring simulates 
Esterline/NASA 2-piece seal. 

Transducer 

Parker S0383-70 seal ring Aluminum plates 
simulates Gask-O-Seal. 

Pressure Decay Apparatus I Flow Fixture Test Section I 

Flow tests performed before and after impact hits to quantify leakage change and 
compare to leakage limit. Failure defined: leakage> 0.001 kg air /day 

9 



•. 

Leakage of Parker Seal Ring over Cratered 
Aluminum Flange vs. Location 

• Crater caused by 0.5 mm AI sphere at 8.14 km/s, resulting in a 2.5 mm dia. crater 

• Leak tested using a 2.5 mm wide Parker seal. 

1 . E +00 ,,------- I4---Seal 

>- 1.E-01 ,t------+---+-- - -\------+-IJ(C--Nt--+--- +_ Crater 
ell 
-c --OJ 
~ 

Q) 

g> 1.E-02 ,t------+---+----\----fftt---+t----+--------j 
~ 
ell 
Q) 

--l 

1.E-03 t---t---h~~=l=~H--~~-+------~ Engineering failure 

1.E-04 +---&+---+---+----+---+---+------1 
-2 -1.5 -1 -0.5 o 0.5 1 1.5 

c-c, Crater center to Seal center distance, mm 
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What Damage Size Will Cause Seal Failure? 

Parker seal: when Dseal> 84% W bu1b 

Parker seal over cratered aluminum: Dflange > 80% W bu1b 

Esterline seal: when Dseal> 84% W bu1b 

Esterline seal over cratered aluminum: Dflange> 90% W bu1b 
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Damage Dependence on Temperature 

1.5 

1.4 +--------::-

1. 3 +--------:i-

~ 1. 2 +--------';-

:.. 1.1 +--------3-
" ~ 

Q 1 +--------= 

0.9 +------= 

0.8 +--~ 

r--23- n- e-g c---',I Strikes 9, 17 and 8e I -78 neg CIStrikes 35e, 35d, and 38b 

• Damage less at lower temperature (-78°C) due to less secondary 
damage and less cracking. 
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Crater Diameters vs. Kinetic Energy 

Parker S0383-70: Avg. crater diameter 6061 T651 aluminum: Avg. crater diameter 
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• Avg. crater diameter generally follows power law relationship 

--r". 

• Relationships used to support subsequent BUMPER computer code analyses 

400 
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Analytical Assessment of 
Risk and Risk Allotment 
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Modeling Risks from MMOD 
FORTRAN program known as BUMPER is used to calculate the 
Probability of Impact (Pol) for the LIDS seal. BUMPER uses the 
sub-programs ORDEM2000 and Meteoroid Engineering Model 
(MEM) to define the MMOD environment. 

Venn Diagram 
illustrating the 4 
failure modes, and 
Seal and Flange 
Failure Probabilities 
for LIDS seal 
exposed for 4 days, 
and ISS flange for 5 
years. 

Probability of Inner 
Seal Failure 

P(Si) = 2.3e-5 

Outer Flange 

Outer Seal 

P(So) = 2.4 e-5 

Inner Flange 

P(Fi) = 7.5e-3 

Prob. of mission failure = PMF = P(SiFo) + P(Sio) + P(Fio) + P(SoFi) 

Notation: S: Seal , F: Flange; i,Jo.: Inner, Outer locations 
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Time, Area and Risk Allocation: ISS Mission 

NASA allocates risk with the formula: 
PNML = XAt 

A = area exposed to space (m2), 

t = time of exposure (yr) 

PNML = Probability of No Mission Loss 

X = Constant determined programmatically through the definition of a 
specific case. 

LIDS System MMOD Risk Allocations and Solution of X using. 

LIDS Risk LIDSPNML LIDS Area m2 LIDS time yr X 

ISS 1 in 2000* 0.9995 2.72 0.5749 (2 10 days) 0.99968 

* Received risk levels from MMOD Analysis Group (Eric Christiansen, William Bohl, 
Kevin Deighton , Michael Bjorkman, + others) 
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LIDS Seal Sub-allotment PNML: ISS Mission 
• With "X" for LIDS defined, we can now determine allowable PNML 

levels for various missions scenarios. 

• Note: mission times play role here 

LIDS Seal MMOD PNML allocations for the LIDS seal and LIDS seal/ISS flange, (area = 0.172 m2), 
with margins of 50% and 100% above the requirement found using X from for LIDS system. 

+ 50% Margin + 100% Margin 

"Case" Time yr PNML Risk 1 in: Seal PNML Risk 1 in: Seal PNML Risk 1 in: 

ISS Sealonly4days 0.01095 0.99999940 1,660,050 0.999999598 2,490,076 0.99999970 3,320,101 

ISSFlange210day 0.57495 0.99996837 31,620 0.999978917 47,431 0.99998419 63,241 

ISSFlange I Oyr 5 0.99972501 3,636 0.999816672 5,455 0.99986250 7,273 

Seal PNML needs to be higher than sub-allotment PNML (+ margin) 
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Assessment of Seal Design: 
Comparison of Expected Seal PNML to Allotment 
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Comparison of "Seal Only" PNML to 
Allotment 

For LIDS Seal only: Probability of No Mission Loss due to seal 
failure caused by MMOD threats to the 2.5 mm wide LIDS seal 
during the 4 days after launch and before docking with ISS. 

1.0000000 ,-----------=~ 

0.9999998 +------------

....:l 0.9999996 +------

~ 
~ 0.9999994 

0.9999992 

0.9999990 

Seal All otment +50% margin + I 00% margin Seal Only 

I Seal PNML (4 day exposure) greatly exceeds sub-allotment PNML + Margin 
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ISS Flange/Seal System PNML Compared to Allotment 

Risk allotment for 210 days of exposure and added margins of safety 
compared to Seal PNML found through BUMPER simulations and 
seal/flange testing. 10 years of service is simulated by 5 years of ram 
exposure. r------- Exceeds 

1.00000 I--=-:--=;::::;:~ ---- Allotment -

0.99995 

0.99990 

~ 0.99985 

~ 0.99980 

0.99975 

0.99970 

0.99965 

Seal +Flange PNML higher than sUb-allotment PNML + margin 
for either time mission case 
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Summary 

• The primary design parameters for the seal bulb are it's height, 
width, and hardness 
- MMOD durability is most sensitive to seal width 
- A wider seal is less vulnerable to MMOD damage, however, adhesion 

and clamping load increase as width is increased 

• MMOD risks to the LIDS seal/flange system are dominated by 
risks to the flange since the flange is exposed for a much longer 
time (10 yrs) than the seals. 

• LIDS seal MMOD risk requirements are exceeded at least by a 
factor of 2 (i.e. including a 100% margin) for the ISS mission for 
a LIDS seal bulb 2.5 mm wide. 
- G~ea.ter margins were found for the Lunar Sortie, and Lunar Outpost 

missions. 

• Since other factors, both known, (e.g. higher temperature) and 
unknown, (e.g. a change in risk allotment), might undermine the 
seal's relative reliability compared to safety requirements, it is 
recommended that the seal be made as wide as clamping loads 
will allow. 
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Ongoing Work 

• Several aspects of MMOD related threats to the seals and 
flange are still being examined by Glenn through a very limited 
number of hypervelocity impacts at WSTF: 
- Examining 4" seals (vs. rings cut from sheet material) 

- Impacts at LIDS seal maximum temperature (125°C); 

- Impacts from particles of low density (near 1 g/cc); 

- Oblique impacts (75°) 

• Plan to accommodate findings from above: 
- If results warrant, re-check MMOD analyses using methodology 

and check relative to margins used herein 

- Use slightly wider seal (-0.12" based on upcoming sub-scale load tests) for: 
• Additional MMOD margin and 

• Reduce seal leakage rates to lowest level possible while still staying 
within load limits. 

24 



• 

Relevant Supporting References 

(1) "Meteoroid and Debris Threats to NASA's Docking Seals," H.C. 
de Groh III, C.A. Gallo, and H.K. Nahra, AIAA-2009-3524, 
Presented and published at the 1 st AIAA Atmospheric and 
Space Environments Conf., On-Orbit Spacecraft-Environment 
Interactions session, June 22, 2009, San Antonio TX. 

(2) "Effects of Hypervelocity Impacts on Silicone Elastomer Seals," 
H.C. de Groh III and B. Steinetz, AIAA-2009-5249, Presented 
at the AIAA Joint Propulsion Conf., Advanced Seals Session, 
Denver CO, Aug. 8, 2009. 

" 




