This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon and GRC’s involvement in their development. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
NASA Glenn Research Center
Battery Activities Overview

NESC Battery Working Group Meeting
Houston, TX
June 30, 2009

Michelle A. Manzo
NASA Glenn Research Center

- Introduction
- Constellation Projects
 - Ares I Crew Launch Vehicle (CLV)
 - Orion Crew Exploration Vehicle (CEV)
 - Altair Lunar Lander
 - Ares V Cargo Launch Vehicle
 - Extra Vehicular Activity (EVA) Suits
 - Lunar Surface Systems
- Technology Development
 - Exploration Technology Development Program
 - Energy Storage Project
 - Li-ion Batteries
 - PEM Fuel Cells
 - PEM Regenerative Fuel Cells

NESC Battery Working Group
ISS Batteries – Penni Dalton
U.S. Space Exploration Policy

- Safely fly the Space Shuttle until 2010
- Complete the International Space Station (ISS)
- Develop a balanced program of science, exploration, and aeronautics
- Develop and fly the Orion Crew Exploration Vehicle (CEV)
- Land on the Moon no later than 2020
- Promote international and commercial participation in exploration

"The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect."

- NASA Administrator Michael Griffin
 October 24, 2006

NASA's Exploration Roadmap
Constellation Leverages Unique Skills and Capabilities Throughout NASA Centers

Dryden
- Lead Abort Flight Test Integration/Operations
- Extravehicular Activity Booster procurement
- Flight Test Vehicle Development/Integration

JPL
- Thermal Protection System support

Ames
- Lead Thermal Protection System ADP
- Aero-Aerothermodynamics database
- Orion abort simulation
- Software and GN&C support

Johnston
- Home for Program
- Orion, Mission Ops, CVA, Lunar Lander
- Lead Crew Module Integration
- Orion Spacecraft Integration
- SFE project management
- Test Flight Program

Langley
- Lead Launch Abort System integration
- Lead landing system ADP
- Ares I-V vehicle integration
- Ares aerodynamics lead
- SSEI Support

Kennedy
- Home for Ground Ops Project
- Ground processing
- Launch operations
- Recovery operations

Marshall
- Home for Ares Project
- Ares I and V development and integration lead
- LAS and SM SSEI Support

Stennis
- Rocket Propulsion Testing for Ares

Glenn
- Lead Service Module and Spacecraft Adapter integration
- Flight Test Article "Pathfinder" fabrication
- Ares I-V upper stage simulator lead
- Ares power, TVC and sensors lead
- JSC altitude/low-altitude testing
- SSEI Support

Goddard
- Communications Support

NASA Exploration Mission Energy Storage Options:

Near-term
- Orion (Crew Exploration Vehicle, CEV)
- Ares I (Crew Launch Vehicle, CLV)
- Ares V (Cargo Launch Vehicle, CaLV)

Lithium-ion baselined for Ares I and Orion

Far-term
- Lunar Precursor and Robotics Program (LPRP)
- Lunar Surface Access Module (Altair)
- Rovers, Habitats and EVA

Battery, fuel cell, regenerative fuel cell energy storage technologies under development
Orion - Crew Exploration Vehicle

- **Launch Abort System (LAS)**
 - Emergency escape of Crew Module during launch

- **Crew Module (CM)**
 - Pressurized crew and cargo transport
 - Only component that returns to Earth for potential re-use

- **System Voltage** 120 Volts
- Both SM and CM operate as separate vehicles at end of mission

- **Batteries – Yardney**
 - **Crew Module**
 - 32 cells, 30AH NCP25-1 (Mars Lander Cells)
 - 4 batteries
 - **Service Module**
 - 32 cells, 7 AH
 - 2 batteries

- **Service Module (SM)**
 - Propulsion, electrical power, and fluids storage

- **Encapsulated Service Module (ESM) Panels**

- **Spacecraft Adapter**
 - Structural transition to launch vehicle

Orion Lithium-Ion Battery

Operational Requirements

- >6000 LEO Cycles at 20%DOD, 14 cycles at 100% DOD
- Mission length – 235 days
- 50-68°F – Operating range, excursions 30 day cumulative to 104°F

CM Battery

- Target mass 88lbs
- Volume allocation 13.6 in. width, 17.6 in length, and 13.4 in height

 Current design exceeds mass and volume

SM Battery – design still in preliminary stages

- Estimated mass 35 lbs
- Volume allocation - 12.4 in width, 16.8 in length, and 11 in height

Designs are fluid – common batteries are under consideration
Ares I - Crew Launch Vehicle

Upper Stage
- 137k kg (305k lbm) LOX/LH₂ stage
- 5.5 m (18 ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system
- NASA Design / Boeing Production

Upper Stage Engine
- Saturn J-2 derived engine (J-2X)
- Expendable
- Pratt and Whitney Rocketdyne ($1.2B)

First Stage
- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems ($1.8B)

Ares I - Upper Stage Batteries

- **Upper Stage** - (Single Failure Tolerant)
 - **Instrument Unit (IU):**
 - Two Power Busses (1 kW average per Bus)
 - Two 16 A-Hr Li-Ion Batteries for EPS
 - **Aft Skirt:**
 - Two Power Busses (3.4 kW average per Bus)
 - Two 16 A-Hr Li-Ion Batteries
 - **Flight (Range) Safety System:**
 - Silver Zinc Batteries (heritage)
 - **Interstage**
 - Three Power Busses (500 W average per Bus)
 - **First Stage:**
 - 55 A-Hr Silver-Zinc Batteries (heritage)

Common US Battery Line Replaceable Unit Concept
16 Amp-Hr, 22 lbs
Ares V Elements

Altair Lunar Lander

Stack Integration
- 3.4M kg (7.4M lbm) gross liftoff weight
- 110 m (360 ft) in length

First Stage
- Two recoverable 5-segment PBAN-fueled boosters (derived from current Ares I first stage)

Core Stage
- Five Delta IV-derived RS-68 LOX/LH₂ engines (expendable)
- 10 m (33 ft) diameter stage
- Composite structures

Earth Departure Stage (EDS)
- One Saturn-derived J-2X LOX/LH₂ engine (expendable)
- 10 m (33 ft) diameter stage
- Aluminum-Lithium (Al-Li) tanks
- Composite structures, instrument unit and interstage
- Primary Ares V avionics system

Ares V Electrical Power

Earth Departure Stage (EDS)
- Design Drivers:
 - Electrical Power for Earth orbit loiter
 - Electrical power transfer to Altair Lunar Lander
 - Launch through trans-lunar injection (TLI) burn
- Design Alternatives:
 - Solar Array & Lithium-Ion Battery
 - Provides for indefinite loiter times
 - Lower heat rejection requirements
 - Opportunity for commonality with Orion systems
 - Primary Fuel Cell
 - Opportunity for commonality with Lander systems
 - Performance not impacted by vehicle attitude during loiter
 - No significant mechanisms required
 - TLI loads should not be an issue

Core Stage Systems
- Batteries & Power Distribution Units
- Flight (Range) Safety System Batteries

Solid Rocket Booster (SRB)
- Thrust Vector Control: electro-hydrostatic actuators (EHAs) under consideration
- May require high-voltage battery
Altair Energy Storage Requirements

Descent Module: Baseline – Primary PEM Fuel Cell
- 3 kW nominal, 6 kW peak, 220 hours continuous operation.
 - Sortie: Power Lander for 9 days continuous (7 days on surface)
 - Outpost: 3 days continuous power (1 day on surface)
- Should operate until all residual propellants converted to water/power
- Must operate with expected fuel and oxidant contamination levels of residual lander propellants.
- Must remove dissolved gases from water by-product during all phases of the mission, including in 0-g.
- Human-safe operation from 0 – 30°C and 0 – 1 G.

Ascent Module: Baseline Primary LiMnO2 Battery
- Baseline battery 121.6 kg, 22.7 kW-hour sized for an ascent underburn.
- Human-safe operation from 0 – 30°C and 0 – 1 G.

Altair Energy Storage System Options

- **Replacing primary battery for ascent stage with very high energy, low cycle secondary will address key risks associated with primary batteries:**
 - Inability to verify proper battery function in-flight before critical use;
 - Probable large mass impact when peak/average power ratios defined;
 - Increased mass and volume to address potential Altair need for power in excess of the 1500 W power transfer requirement from Orion & EDS identified in LDAC3

- **Rechargeable batteries can eliminate these risks; but mass should not increase appreciably**
 - 160 – 200 W-hr/kg at the battery level may be sufficient.
 - Nominally ten recharge cycles are required with 1.67 kW nominal power and 2 kW peak power, operating for 7 hours continuously.
 - Human-safe operation from 0 – 30°C and 0 – 1 G.
Lunar Extravehicular Activity Suit

Greatly increased electronic capability (HDTV, communications node, drives need for high energy batteries in small, low-mass package. Very high specific energy and energy density with 8-hour, human-safe operation drives technology development.

Preliminary Battery Requirements:
- Human-safe operation
- ~1155 W-Hr energy
- 8 hours continuous operation
- ~144 W average power
- 233 W max power
- Current mass allocation: 5 kg
- Current volume allocation: 3 liters
- 100 cycles (operation every other day for six months)

Prioritized mission requirements:
- Human-safe operation; 8-hr duration;
- high specific energy; high energy-density.

Lunar Surface Systems

Scenario-Based Planning:
Rechargeable batteries and/or regenerative fuel cells for power & support unit, portable utility pallet, and/or mobility systems

- **Power & Support Unit**
 - Mass: PSU 2,867 kg / SSU 880 kg
 - Energy storage: 720 kWh Regenerative Fuel Cells
 - Power generation: 11.2 kW net, 9 meter solar array
 - Power consumables storage: 337 kg oxygen, 43 kg hydrogen; 450 kg water x 2 (power and scavenge)

- **Crew Mobility Chassis Specifications**
 - 969 kg dry vehicle mass, >100 km range, upgradable with PUPs
 - 0-5 kph low gear, 0-20 kph high gear
 - 20 kWh onboard energy storage (Li-ion battery)
 - 5.9 kW peak power, 1.15 kW average power and 125 W standby power.
 - Nominal drive time is 87 hours and stand-by time is 800 hours.

- **Portable Utility Pallet**
 - Logistics: 25 kg Oxygen, 90 kg Water, 90 kg Wastewater
 - Power Generation: 4.4-kW, 5.5-meter Orion-class array
 - Energy Storage: 10 kWh (Li-ion batteries)
 - Mass: 708.9 kg (dry), 963.4 kg (wet)
Lunar Surface Systems

Potential Requirements

- Modular power system
- ~20-40 kW lunar daytime power level
- ~10-20 kW lunar nighttime power level
- 5,000 hr operational life at poles
- >10,000 hr operational life beyond poles
- 5-10 year calendar life
- 100 -1000+ discharge/recharge cycles
- Thermal, dust, launch/landing, vacuum environments
- Reliable, human-rated operation in thermal, dust, launch/landing, vacuum environments
- Autonomous control and operation
- Human-rated
- Low mass and volume
- Little or no maintenance needs

Fuel Cell / Regenerative Fuel Cell Needs

- 5,000 hr operational life at poles
- >10,000 hr operational life beyond poles
- 100 -1000+ discharge/recharge cycles
- Compatible with H2/O2 tanks at 2000 psi

Battery Needs

- 10-hour discharge and 10-hour charge
- 2000 discharge/recharge cycles
- Temperature controlled to 0 – 30°C
- 5 year calendar life

Exploration Technology Development Program

Energy Storage Project

Project Objective: Reduce risks associated with the use of batteries, fuel cells, and regenerative fuel cells for Altair, Lunar Surface Systems, and EVA.

Project TRL-6 Deliverables:

- Primary fuel cell for Altair Descent Stage
- Regenerative fuel cell for Lunar Surface Power Units and Mobility Systems
- Rechargeable battery cells for Altair Ascent Stage, EVA Suit 2, Lunar Surface Mobility Systems

Lithium-based Battery Technology:
Develop Lithium-based cells for human-rated, reliable operation with very high specific energy.

Fuel cell technology:
Develop proton-exchange-membrane stack and balance-of-plant technology to increase system lifetimes and reduce mass, volume and parasitic power.

Regenerative fuel cell technology:
Develop balanced high-pressure electrolyzers and thermal management and reactant processing technologies for integrated electrolyzer/fuel cell.
Energy Storage Project WBS

<table>
<thead>
<tr>
<th>1.0 Project Management</th>
<th>2.0 Lithium-Ion Batteries</th>
<th>3.0 Fuel Cell Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Project Management</td>
<td>2.1 Battery Task Management</td>
<td>3.1 Fuel Cell Task Management</td>
</tr>
<tr>
<td>1.2 Systems Assessments</td>
<td>2.2 High Energy Cell (for LSS)</td>
<td>3.2 Primary Fuel Cell Development</td>
</tr>
<tr>
<td></td>
<td>2.2.1 HE-Unique Component Development</td>
<td>3.2.1 Stacks</td>
</tr>
<tr>
<td></td>
<td>2.2.2 HE Cell Development</td>
<td>3.2.1.1 Baseline Stacks</td>
</tr>
<tr>
<td></td>
<td>2.2.3 HE KPP Assessments</td>
<td>3.2.1.2 Alternative Stacks</td>
</tr>
<tr>
<td></td>
<td>2.3 Ultra-High Energy Cell (for EVA & Altair)</td>
<td>3.2.2 BOP and System Testing</td>
</tr>
<tr>
<td></td>
<td>2.3.1 UHE Component Development</td>
<td>3.3 High-P Electrolysis Development</td>
</tr>
<tr>
<td></td>
<td>2.3.2 UHE Cell Development</td>
<td>3.4 Regenerative Fuel Cell Technology</td>
</tr>
<tr>
<td></td>
<td>2.3.3 UHE KPP Assessments</td>
<td>3.5 Cross-Cutting Tech Development</td>
</tr>
<tr>
<td></td>
<td>2.4 Safety, Packaging, and Control</td>
<td>3.5.1 Passive Thermal Control</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Cell Configuration</td>
<td>3.5.2 Advanced MEAs</td>
</tr>
<tr>
<td></td>
<td>2.4.2 External Safety Devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.3 Control Methodologies</td>
<td></td>
</tr>
<tr>
<td>GRC, JPL, JSC Participants</td>
<td>Concha Reid, Tom Miller Co-PI</td>
<td>GRC, JPL, JSC, KSC Participants</td>
</tr>
<tr>
<td></td>
<td>Mark Hoberrecht PI</td>
<td></td>
</tr>
</tbody>
</table>

GRC Led Project
Carolyn Mercer
Project Manager
Amy Jankovsky
Integration Manager

Grayed elements unused in FY99

Li-Ion Battery Development

Objectives: Develop Flight Qualified, Human-Rated Li-ion cells with increased reliability and mass and volume reductions

Approach:
- Identify chemistries most likely to meet overall NASA goals and requirements within allotted development timeframe
 - "High energy" and "ultra high energy" cells targeted to meet customer requirements.
- Utilize in-house and NRA Contracts to support component development
 - Develop components to increase specific energy (anode, cathode, electrolyte)
 - Develop low-flammability electrolytes, additives that reduce flammability, battery separators and functional components to improve human-safety;
 - Charge methodology
- Engage industry partner - multi year contract
 - Provide recommendations for component development / help screen components
 - Scale-up components (core)
 - Manufacture evaluation and screening cells
 - Design and optionally manufacture lightweight cells that address NASA's goals
- Complete TRL 5 and 6 testing at NASA
 - Leverage outside efforts
 - Utilize SBIR/IPP efforts
 - Leverage work at DoE and other government agencies

Cell development TRL definitions:

TRL 4: Advanced cell components integrated into a flight design cell

TRL 5: Performance testing on integrated cell shows goals met

TRL 6: Environmental testing on cell (vibration, thermal) shows robust performance
Key Performance Parameters for Battery Technology Development

<table>
<thead>
<tr>
<th>Customer Need</th>
<th>Performance Parameter</th>
<th>State-of-the-Art</th>
<th>Current Value</th>
<th>Threshold Value</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, reliable operation</td>
<td></td>
<td>Instrumentation/controls used to prevent unsafe conditions. There is no non-flammable electrolyte in SAO</td>
<td>Preliminary results indicate a moderate reduction in the performance with flame retardants and non-flammable electrolytes</td>
<td>Tolerant to electrical and thermal abuse such as over-temperature, over-charge, reversal, and external short circuit with no fire or flame</td>
<td></td>
</tr>
<tr>
<td>Specific energy</td>
<td>Lander: 150 - 210 Wh/kg 10 cycles</td>
<td>90 Wh/kg at C/10 & 30°C 83 Wh/kg at C/10 & 0°C (MER rovers)</td>
<td>130 Wh/kg at C/10 & 30°C 120 Wh/kg at C/10 & 0°C</td>
<td>155 Wh/kg at C/10 & 0°C "High-Energy"** 180 Wh/kg at C/10 & 0°C "Ultra-High Energy"**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rover: 160 - 200 Wh/kg</td>
<td>118 Wh/kg at C/10 & 0°C</td>
<td>150 Wh/kg at C/10 & 0°C</td>
<td>165 Wh/kg at C/10 & 0°C "High-Energy" 180 Wh/kg at C/10 & 0°C "Ultra-High Energy"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVA: 270 Wh/kg 160 cycles</td>
<td>130 Wh/kg at C/10 & 30°C</td>
<td>150 Wh/kg at C/10 & 0°C</td>
<td>165 Wh/kg at C/10 & 0°C "High-Energy" 180 Wh/kg at C/10 & 0°C "Ultra-High Energy"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell-level specific energy</td>
<td>180 mAh</td>
<td>250 mAh at C/10 & 30°C 200 mAh at C/10 & 0°C</td>
<td>260 mAh at C/10 & 0°C</td>
<td>280 mAh at C/10 & 0°C</td>
</tr>
<tr>
<td></td>
<td>Cathode-level specific capacity Li(LINMC)O₂</td>
<td>280 mAh (Li(NMC)O₂)</td>
<td>300 mAh (Li(NMC)O₂)</td>
<td>600 mAh at C/10 & 0°C (with Si composite)</td>
<td>1000 mAh at C/10 & 0°C (with Si composite)</td>
</tr>
<tr>
<td></td>
<td>Anode-level specific capacity Li(LINMC)O₂ / (MCM8)</td>
<td>250 mAh</td>
<td>300 mAh (MCP-111) 450 mAh (Si composite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy density</td>
<td>Lander: 311 Whl</td>
<td>250 Whl</td>
<td>n/a</td>
<td>270 Whl "High-Energy" 360 Whl "Ultra-High"</td>
<td>320 Whl "High-Energy" 420 Whl "Ultra-High"</td>
</tr>
<tr>
<td></td>
<td>Rover: TBD</td>
<td>320 Whl</td>
<td>n/a</td>
<td>385 Whl "High-Energy" 460 Whl "Ultra-High"</td>
<td>390 Whl "High-Energy" 530 Whl "Ultra-High"</td>
</tr>
<tr>
<td></td>
<td>EVA: 400 Whl</td>
<td>320 Whl</td>
<td>n/a</td>
<td>385 Whl "High-Energy" 460 Whl "Ultra-High"</td>
<td>390 Whl "High-Energy" 530 Whl "Ultra-High"</td>
</tr>
<tr>
<td>Operating environment</td>
<td>0°C to 35°C, Vacuum</td>
<td>-20°C to +40°C</td>
<td>-50°C to +40°C</td>
<td>0°C to 30°C</td>
<td>0°C to 30°C</td>
</tr>
</tbody>
</table>

Assumes prismatic cell packaging for threshold values. Goal values include lightweight battery packaging.

* Battery values are assumed at 100% DOD, discharged at C/10 to 3,500 volts/cell, and at 0°C operating conditions.

** "High-Energy" = Exploration Technology Development Program cathode with MCM8 graphite anode

*** "Ultra-High Energy" = Exploration Technology Development Program cathode with silicon composite anode

Revised 5/19/09
Lithium-Based Battery Master Schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Development</td>
<td>NRA contracts and In-House</td>
</tr>
<tr>
<td>Screen, scale-up, cell design</td>
<td>Screen, scale-up, cell design</td>
</tr>
<tr>
<td>Scale-up and Cell Build</td>
<td>Scale-up and Cell Build</td>
</tr>
<tr>
<td>Integrated Component Down-select</td>
<td>Integrated Component Down-select 1 & 2</td>
</tr>
<tr>
<td>BASIC A</td>
<td>BASIC B</td>
</tr>
</tbody>
</table>

Rate Capability
- **BASIC A**: up to C/2
- **OPTION 1A**: Flightweight 1-Cell A
- **OPTION 1B**: Flightweight Cell B

Li-ion Based Batteries
- **Ultra-High Energy Battery**
- **High Energy Battery**

Safety, Packaging and Control
- Fault isolation electronics studies and design
- Pack level testing of Li-ion cells

Ultra High Energy Battery Feasibility Study

Attribute Weights

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Final Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>17.9</td>
</tr>
<tr>
<td>Rate Capability up to C/5</td>
<td>15.6</td>
</tr>
<tr>
<td>Specific Energy</td>
<td>15.0</td>
</tr>
<tr>
<td>Storage and Calendar Life</td>
<td>12.2</td>
</tr>
<tr>
<td>Energy Density</td>
<td>10.2</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>8.3</td>
</tr>
<tr>
<td>Schedule</td>
<td>8.0</td>
</tr>
<tr>
<td>Cost to TRL 6</td>
<td>6.5</td>
</tr>
<tr>
<td>Cycle Life</td>
<td>3.8</td>
</tr>
<tr>
<td>Rate Capability up to C/2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Chemistry Options

Cathode
- Li(LiNMC)O₂ (ETDP)
- Li(Ni₀.₃₃Mn₀.₃₃Co₀.₃₃)O₂
- Li(Ni₀.₃₃Mn₀.₃₃Co₀.₃₃)O₂
- Li(LiNMC)O₂ (ETDP)

Anode
- Si-Based Composite
- Si-Based Composite
- Li Metal
- Li metal
- Li metal
- Li metal

Rev: 05/26/09
Cell Level Specific Energy Projections of Final Chemistry Options

Advanced Chemistry Options and Final Weights

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Anode</th>
<th>Final Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li(Ni_{0.33}Mn_{0.33}Co_{0.33})O_2</td>
<td>Si-based Composite</td>
<td>20.2</td>
</tr>
<tr>
<td>Li(LiNiMC)O_2 (ETDP)</td>
<td>Si-basedComposite</td>
<td>17.0</td>
</tr>
<tr>
<td>LiNiMn_2O_4</td>
<td>Li metal</td>
<td>15.3</td>
</tr>
<tr>
<td>Li(Ni_{0.33}Mn_{0.33}Co_{0.33})O_2</td>
<td>Li metal</td>
<td>13.9</td>
</tr>
<tr>
<td>Li(LiNiMC)O_2 (ETDP)</td>
<td>Li metal</td>
<td>13.1</td>
</tr>
<tr>
<td>(Li_2)S</td>
<td>Li metal</td>
<td>11.5</td>
</tr>
<tr>
<td>LiCoPO_4</td>
<td>Li metal</td>
<td>9.1</td>
</tr>
</tbody>
</table>

- Li(NMC) cathode with Si-based composite anode offers:
 - Higher safety, manufacturability and rate capability
 - Lower specific energy

- ETDP cathode with Si-based composite anode offers:
 - Higher specific energy
 - Lower safety, manufacturability and demonstrated rate capability
NASA Research Announcement NNC08ZP022N
Research and Development of Battery Cell Components

Contracts Awarded

- Georgia Tech Research Corp. & Clemson University, “Design of Resilient Silicon Anodes”
- University of Texas at Austin, “Development of High Capacity Layered Oxide Cathodes”
- NEI Corp., “Mixed Metal Composite Oxides for High Energy Li-ion Batteries”
- Yardney, “Flame-retardant, Electrochemically Stable Electrolyte for Lithium-ion Batteries”
- Giner, “Control of Internal and External Short Circuits in Lithium-Ion Batteries”
- Physical Sciences, “Metal Phosphate Coating for Improved Cathode Material Safety”

Battery SBIRs and STTRs

Phase I SBIRS

- Yardney Technical Products – Advanced Battery Materials for Rechargeable Advanced Space-Rated Li-Ion Batteries
- Superior Graphite Co. – SiLiC Nanocomposites for High Energy Density Li-Ion Battery Anodes
- Physical Sciences, Inc. – Silicon Whisker and Carbon Nanofiber Composite Anode
- TH Chem, Inc. – New Li Battery Chemistry for Improved Performance
- TDA Research, Inc. – High Capacity Anodes for Advanced Lithium Ion Batteries
- EIC Laboratories, Inc. – Nanoshell Encapsulated Li-ion Battery Anodes for Long Cycle Life
- Giner, Inc. – Non-Flammable, High Voltage Electrolytes for Lithium Ion Batteries

Phase II SBIR - Yardney Technical Products – Nano-Engineered Anode Materials for Rapid Recharge High Energy Density Lithium-ion Batteries

STTR - NEI Corporation - High capacity and high voltage composite oxide cathode for Li-ion batteries
Anodes

- Goal: 1000 mAh/g at C/10 and 0°C > 3X the capacity of SQA Li-ion anodes
- Significant results to date:
 - Pursuing multiple approaches to develop Silicon-based composite anodes that will enable the specific energy and cycle life goals. Combination of in-house and NRA development activities.
 - First NRA deliverables from Georgia Tech have been evaluated (ETDP-3 GT)
 - 406 mAh/g after 5 cycles at C/20 and 23°C
 - Translates to ~368 mAh/g respectively at C/20 and 0°C
 - Preliminary results from Lockheed Martin NRA:
 - 1592 mAh/g after 3 cycles at ~C/30 and 23°C,
 - 1st cycle irreversible capacity loss = 306 mAh/g
 - Translates to ~1433 mAh/g at C/30 and 0°C
 - In-house anode synthesis capability established at GRC
 - Complementary approaches being pursued with deliverables Oct 2009
 - Modified resorcinol/formaldehyde gel
 - Thin Si film in 3D carbon structure

<table>
<thead>
<tr>
<th>Technology Challenges</th>
<th>Current Approaches to Address</th>
</tr>
</thead>
</table>
| Minimize volume expansion during cycling | • Pursuing various approaches to optimize the anode structure to accommodate volume expansion of the silicon
 - Nanostructured Si composite absorbs strain, resists active particle isolation on cycling
 - Incorporation of elastic binders in Si-graphite and Si-C matrices
 - Improvement of mechanical integrity by fabricating structure to allow for elastic deformation |
| Minimize irreversible capacity loss | • Protection of active sites with functional binder additives
 - Pre-lithiation approaches are possible
 - Nanostructured Si resists fracture and surface renewal |
| 250 cycles | Loss of contact with active particles reduces cycle life. Addressing volume changes and improvement of mechanical integrity will improve cycle life |

Cathodes

- Goals:
 - Specific capacity of 280 mAh/g at C/10 and 0°C to 3.0 V
 - High voltage operation to 4.8 V
 - Improved thermal stability over conventional Li-ion cathodes
- Significant Results to date:
 - Baseline cathode material compositions/structures that are inherently more thermally stable than conventional Li-ion cathode materials
 - Achieved 280 mAh/g at C/20 and room temp between 4.8 and 2.0V in small lab scale testing (Li0.54Mn0.55Ni0.15Co0.15O2 with Al2O3 coating from UT Austin)
 - Translates to ~239 mAh/g at C/20 and 0°C to 3.0 V
 - Achieved 210-220 mAh/g at C/10 and room temp between 4.8 and 2.0V (Li0.54Mn0.55Ni0.15Co0.15O2 - uncoated = NEI-D)
 - Translates to ~180-188 mAh/g at C/10 and 0°C to 3.0 V
 - Successfully synthesized in large batch sizes
 - Operation to 4.8V demonstrated with good reversibility
 - Cathodes tested with several electrolyte formulations (need compatible electrolytes to

<table>
<thead>
<tr>
<th>Technology Challenges</th>
<th>Current Project Approaches to Address</th>
</tr>
</thead>
</table>
| High specific capacity at practical discharge rates | • Vary stoichiometry to determine optimum chemical formulation
 - Reduce particle size
 - Experiment with different synthesis methods to produce materials with physical properties such that their specific capacity is retained on production scale |
| Low volume per unit mass | • Vary cathode synthesis method to optimize properties that can:
 - Improve energy density
 - Improve ability to cast cathode powders
 - Facilitate incorporation of oxide coatings, which have the potential to increase rate capability and reduce capacity fade to extend cycle life |
| Minimize 1st cycle irreversible capacity loss and | • Surface modification via coatings to improve cathode-electrolyte interfacial properties
 - Improves capacity retention |
Separators

- **Goals:**
 - Identification of Li-ion cell separator materials that are compatible with the ETDP chemistry and provide an increased level of safety over SCA Li-ion cell separators
 - Current efforts are focused on assessment of developmental (i.e., company IRAD materials) and commercial separator materials

- **Significant results to date:**
 - Baseline separator identified (Tonen E20) and evaluated
 - Physical, thermal, electrical and mechanical properties measured and documented
 - Several promising commercial and IRAD materials identified and evaluated. Procured, obtained, or negotiating for additional samples to evaluate for our purposes
 - Physical Sciences, Inc.
 - Exxon Mobil
 - Kyocera PVDF resins
 - Porous Power Technologies Symmetric separators
 - Tonem polyolefin (PE)
 - Celgard polypropylene (PP)
 - Celgard PP/PE/PP tri-layer
 - Soft America ceramics
 - Example results for Symmetric PVDF Separators developed by Porous Power Technologies:
 - As compared to baseline, higher porosity, lower ionic resistance, lower internal heat generation, and allows for higher power and rate capability
 - Fiber-reinforced separator material may suppress internal shorts at elevated temperatures by maintaining mechanical integrity

- **Technology Challenges:**
 - No significant technology challenges
 - Design optimization for high porosity and low ionic resistance to facilitate ionic conductivity while maintaining mechanical strength
 - Must "shutdown" cell reactions below 130 degrees C without shrinking or losing mechanical integrity

Electrolytes

- **Goal:** Develop flame retardant and/or non-flammable electrolytes that are stable up to 5V

- **Significant results to date:**
 - Demonstrated capability of flame retardant electrolytes in experimental and prototype cells and determined the impact on life and rate capability (i.e., Gen 1 electrolyte observed to have comparable life to baseline system)
 - Investigated various electrolyte additives to improve high voltage cycling performance
 - No significant impact in high voltage performance cycling stability observed vs. baseline electrolyte
 - Determined baseline electrolyte is compatible with high voltage operation in cells with JPL-developed high voltage cathodes, when evaluated in experimental cells using Li metal as anodes
 - Examined the ability of linear carbonate type electrolytes to improve high voltage stability
 - No impact on high voltage performance observed
 - Assessed the performance of flame retardant additives in a high voltage system
 - Displayed rate performance between C/10 and C/2
 - Electrolytes with flame retardant additives displayed some reduced power and life versus systems with the baseline electrolyte (i.e., the FRA-containing electrolyte delivered ~ 95% of the baseline electrolyte using a C/2 discharge rate)
 - Many investigations in small laboratory coin cells, may different results in a fully mature cell

<table>
<thead>
<tr>
<th>Technology Challenges</th>
<th>Current approaches to address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte that is stable up to 5V</td>
<td>Experiment with different electrolyte formulations and additives with potential to improve high voltage stability. Study interactions at both electrodes</td>
</tr>
<tr>
<td>Non-flammable or flame retardant electrolyte</td>
<td>Develop electrolytes containing additives with known flame retardant properties. Perform flame retardance assessments on developments that exhibit suitable electrochemical performance</td>
</tr>
<tr>
<td>High voltage stable, non-flammable or flame retardant electrolyte (combination of both properties in one electrolyte system)</td>
<td>Combine flame retardant additives with electrolyte formulations with high voltage stability. Operate systems to high voltages and investigate impacts on power capability and life.</td>
</tr>
<tr>
<td>Electrolytes possessing the requisite physical properties to ensure good rate capacity (adequate conductivity) and compatibility (wettability).</td>
<td>Develop electrolytes that are not excessively viscous to ensure that the ionic conductivity is sufficiently high over the desired temperature range and the separator wettability is adequate.</td>
</tr>
</tbody>
</table>
Safety

- Goal: Cells that are tolerant to electrical and thermal abuse
- Significant results to date: Cathode particles with a coating display no exotherms up to 300 °C; switching behavior with composite coating on current collector observed at >60 °C.

<table>
<thead>
<tr>
<th>Technology challenges</th>
<th>Approaches to address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Electrodes</td>
<td>Develop materials to improve tolerance to an electrical abuse condition</td>
</tr>
<tr>
<td></td>
<td>• Approach 1: Develop a high-voltage stable (phosphate) coating on a cobaltate cathode particle to increase the safe operating voltage of the cell and reduce the thermal dissipation by the use of a high-voltage stable coating material (cobalt phosphate).</td>
</tr>
<tr>
<td></td>
<td>• Approach 2: Develop a composite thermal switch to shutdown cell reactions safely using coatings on the current collector substrates</td>
</tr>
<tr>
<td>Safe electrolyte</td>
<td>Development of advanced high voltage, non-flammable/flame-retardant electrolytes (via electrolyte task)</td>
</tr>
</tbody>
</table>

PEM Fuel Cell Development

Objectives:
- Increase system lifetimes and reduce system mass, volume and parasitic power for primary and regenerative proton exchange membrane (PEM) fuel cells, and
- Enable the use of regenerative PEM fuel cells including the use of high pressure (>2000 psi) reactants to reduce tankage mass and volume.

- Focus is exclusively on Proton Exchange Membrane fuel cells and regenerative fuel cell systems
- Technical Approach is to develop:
 - "Non-flow-through" proton exchange membrane stack and customized balance-of-plant technology;
 - Advanced membrane-electrode-assemblies (MEAs) for both fuel cells and electrolyzers,
 - Balanced high-pressure electrolyzers; and
 - Thermal and reactant management technologies for electrolyzer/fuel-cell integration into regenerative fuel cell systems.
Fuel Cell Technical Approach

Develop "non-flow-through" proton exchange membrane fuel cell technology for a system improvement in weight, volume, reliability, and parasitic power over "flow-through" technology.

Flow-Through components eliminated in Non-Flow-Through system include:
- Pumps or injectors/ejectors for recirculation
- Motorized or passive external water separators

Non-Flow-Through PEMFC technology characterized by dead-ended reactants and internal product water:
- Tank pressure drives reactant feed; no recirculation
- Water separation occurs through internal cell wicking

Key Performance Parameters for Fuel Cell Technology Development

<table>
<thead>
<tr>
<th>Customer Need</th>
<th>Performance Parameter</th>
<th>SOA (alkaline)</th>
<th>Current Value*</th>
<th>Threshold Value** (@ 3 kW)</th>
<th>Goal** (@ 3 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altair: 3 kW for 220 hours continuous, 5.5 kW peak.</td>
<td>System power density</td>
<td>Fuel Cell RFC (without tanks)</td>
<td>49 W/kg</td>
<td>n/a</td>
<td>88 W/kg</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell Block power density</td>
<td>n/a</td>
<td>n/a</td>
<td>107 W/kg</td>
<td>231 W/kg</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell Balance-of-plant mass</td>
<td>n/a</td>
<td>n/a</td>
<td>21 kg</td>
<td>9 kg</td>
</tr>
<tr>
<td>Lunar Surface Systems: TBO kW for 15 days continuous operation</td>
<td>MEA efficiency @ 200 mA/cm²</td>
<td>For Fuel Cell Individual cell voltage</td>
<td>73%</td>
<td>72%</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.90V</td>
<td>0.89V</td>
<td>0.90V</td>
<td>0.92V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Electrolysis Individual cell voltage</td>
<td>n/a</td>
<td>86%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
<td>1.48</td>
<td>1.46</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For RFC (Round Trip)</td>
<td>n/a</td>
<td>62%</td>
<td>62%</td>
</tr>
<tr>
<td>Rover: TBO •Based on limited small-scale testing. **Threshold and Goal values based on full-scale (3 kW) fuel cell and RFC technology. ***Teledyne passive flow through with latest MEA. ****Includes high pressure penalty on electrolysis efficiency 2000 psi.</td>
<td>System efficiency @ 200 mA/cm²</td>
<td>Fuel Cell</td>
<td>71%</td>
<td>65%***</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parastic penalty</td>
<td>2%</td>
<td>10%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regenerative Fuel Cell*** Parastic penalty</td>
<td>n/a</td>
<td>n/a</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Pressure penalty</td>
<td>n/a</td>
<td>n/a</td>
<td>20%</td>
</tr>
<tr>
<td>Maintenance-free lifetime</td>
<td>Maintenance-free operating life</td>
<td>Altair: 220 hours (primary)</td>
<td>Fuel Cell MEA</td>
<td>2500 hrs</td>
<td>13,500 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface: 10,000 hours (RFC)</td>
<td>Electrolysis MEA</td>
<td>n/a</td>
<td>5,000 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fuel Cell System (for Altair)</td>
<td>2500 hrs</td>
<td>220 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regenerative Fuel Cell System</td>
<td>n/a</td>
<td>5,000 hrs</td>
</tr>
</tbody>
</table>
Progression of Primary Fuel Cell Hardware from Small-Scale to Large-Scale

<table>
<thead>
<tr>
<th>MEA Infusion</th>
<th>Primary Fuel Cell Hardware</th>
<th>Hardware Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Units</td>
<td>Laboratory stack is 50 cm² Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Lab stack #1 is graphite. Deliverable from SBIR contract. 1st Non-Flow-Through stack at NASA.</td>
<td>4 cells, 40 – 80 W</td>
<td>1st balance-of-plant (BOP #1) developed.</td>
</tr>
<tr>
<td>Lab stack #2 incorporates NASA flat plate heat pipes and MEAs. Partially includes innovative assembly technology. Stainless steel plate used to accommodate heat pipe.</td>
<td>4 cells, 40 – 80 W</td>
<td></td>
</tr>
<tr>
<td>Lab stack #3 fully integrates innovative assembly technology.</td>
<td>4 cells, 40 – 80 W</td>
<td></td>
</tr>
<tr>
<td>Lab stack #4 fully integrates innovative assembly technology with reactant pre-humidification and product-water dissolved gas removal</td>
<td>12 cells, 100 – 200 W</td>
<td>2nd balance-of-plant (BOP #2) with autonomous operation</td>
</tr>
</tbody>
</table>

| Large-Area Units | Large-area stack is 150 cm² Stainless Steel | |
| Large-area cell design based on lab stack test data. | |

Short stack has 4-cells. Two units will be delivered, both of the same design.	3rd balance-of-plant (BOP #3)	
Breadboard system is a quarter-scale (35-40 cells) stack. This unit will be used for TRL-5 testing.	35 – 40 cells, ~1 kW	4th balance-of-plant (BOP #4), fully autonomous
Engineering Model	Based on Breadboard design Uses final materials (e.g. Niobium)	
Engineering model to be used for TRL-6 testing	150 cm², ~140 cells, 2 – 3 kW	
Infinity Accomplishment

- Integrated balance-of-plant demonstrated in conjunction with the laboratory scale fuel cell stacks
- During this testing, the balance-of-plant ran on a battery source consuming only 10 watts of parasitic power to operate the fuel cell system
- A full-scale (3-kw fuel cell system) balance-of-plant will likely operate on only 50 watts or less of parasitic power (same number of components, but some components larger)
- A 2-12 kW flow-thru fuel cell system tested at GRC required over 1000 watts of parasitic power during operation
- That difference in parasitic power means that Altair would need 100-200 kg less reactants over the course of its 2-3 week mission using a non-flow-through fuel cell system vs. a flow-through system
Membrane Electrode Assembly

- NASA fuel cell and electrolysis MEA performance exceeds best performance of industry vendors

JPL MEAs supplied to Teledyne, Infinity, and Proton Energy

JPL MEAs performing at 0.89 V at 200 mA/cm² exceed the performance of Vendor cells substantially.

Comparison of JPL’s best iridium-doped ruthenium with the latest vendor MEA shows 30mV performance improvement by the NASA material.

Leveraged Activities: Fuel Cells

Fuel Cell Working Group

To facilitate knowledge transfer that will benefit the space power community by ensuring that fundamental knowledge and understanding underpins new technology development. Participants have the opportunity to receive early insights into NASA-funded technical advances, and the opportunity to provide opinions regarding the relevance of NASA-funded research.

IPP Seed Fund Program

- The Boeing Company and Teledyne Energy Systems – Human-Rated Space Power Systems Pallet Demonstrating Fuel Cells, Lithium-Ion Batteries and Advanced Thermal Management Technologies
- Hamilton Sundstrand Space Systems – Advanced High-Pressure Electrolysis System Development for NASA’s Explorations Systems Program
Leveraged Activities: Fuel Cells

Phase I SBIRs
- Amsen Technologies – A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells
- Thermacore – Titanium Heat Pipe Thermal Plane
- Infinity Fuel Cell and Hydrogen – Advanced Cathode Electrolyzer
- Giner Electrochemical Systems – Static Water Vapor Feed Electrolyzer
- RidgeTop Group – Innovative Fuel Cell Health Monitoring IC

Phase II SBIRs
- ElectroChem. – Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities
- Giner Electrochemical Systems – Dimensionally Stable Membrane for High Pressure Electrolyzers
- Giner Electrochemical Systems – Electrolyzer for NASA Lunar Regenerative Fuel Cells
- Distributed Energy Systems (Proton Energy) – Closed-Loop Pure Oxygen Static Feed Fuel Cell for Lunar Missions
- Giner Electrochemical Systems – Advanced Composite Bipolar Plate for Unitized Regenerative Fuel Cell/Electrolyzer Systems

SBIRs developing alternative non-flow-through fuel cell technology, balanced high-pressure electrolysis technology, improved MEAs, and advanced balance-of-plant components for electrical and thermal management

NASA Engineering and Safety Center (NESC)

NASA Aerospace Flight Battery Systems Working Group

Addresses critical battery-related performance / manufacturing issues for NASA and the aerospace community

Objectives
- Develop/maintain/provide tools for the validation of aerospace battery technologies
- Accelerate technology readiness and provide infusion paths for emerging technologies
- Enable implementation of critical risk-mitigating test programs
- Disseminate validation/assessment tools, quality assurance and information to the NASA and aerospace battery communities
- Provide problem resolution expertise and capabilities

Working Group Makeup
- NASA Center members on core teams responsible for task implementation
- Partner agencies provide consultation and support for planning/reviewing activities
Binding Procurements – guidelines related to requirements for the battery system that should be considered at the time of contract award

Wet Life of Ni-H₂ Batteries – issues/strategies for effective storage and impact of long-term storage on performance and life

Generic Guidelines for Lithium-ion Safety, Handling and Qualification – Standardized approaches developed and risk assessments

- Lithium-ion Performance Assessment – survey of manufacturers and capabilities to meet mission needs. Guidelines document generated
- Conditions Required for using Pouch Cells in Aerospace Missions – focus on corrosion, thermal excursions and long-term performance issues. Document defining requirements to maintain performance and life
- High Voltage Risk Assessment – focus on safety and abuse tolerance of battery module assemblies. Recommendations of features required for safe implementation
- Procedure for Determination of Safe Charge Rates – evaluation of various cell chemistries and recommendation of safe operating regimes for specific cell designs

Lithium-ion Battery Source Material Availability – provide additional support for the governmental Title 3 effort aimed at ensuring a constant supply of source material

NASA Aerospace Battery Workshop – government-industry forum focused on battery industry developments and issues (held annually in the Fall)

ISS Update – Penni Dalton