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Abstract  

This report presents the mechanical verification 

of a self-stabilizing distributed clock synchronization 

protocol for arbitrary digraphs in the absence of 

faults.  This protocol does not rely on assumptions 

about the initial state of the system, other than the 

presence of at least one node, and no central clock or 

a centrally generated signal, pulse, or message is 

used.  The system under study is an arbitrary, non-

partitioned digraph ranging from fully connected to 

1-connected networks of nodes while allowing for 

differences in the network elements.  Nodes are 

anonymous, i.e., they do not have unique identities.  

There is no theoretical limit on the maximum number 

of participating nodes.  The only constraint on the 

behavior of the node is that the interactions with 

other nodes are restricted to defined links and 

interfaces.  This protocol deterministically converges 

within a time bound that is a linear function of the 

self-stabilization period.  A bounded model of the 

protocol is verified using the Symbolic Model 

Verifier (SMV) for a subset of digraphs.  Modeling 

challenges of the protocol and the system are 

addressed. The model checking effort is focused on 

verifying correctness of the bounded model of the 

protocol as well as confirmation of claims of 

determinism and linear convergence with respect to 

the self-stabilization period. 

1. Introduction 

Synchronization algorithms are essential for 

managing the use of resources and controlling 

communication in a distributed system.  

Synchronization of a distributed system is the 

process of achieving and maintaining a bounded 

skew among independent local clocks.  A distributed 

system is said to be self-stabilizing if, from an 

arbitrary state, it is guaranteed to reach a legitimate 

state in a finite amount of time and remain in a 

legitimate state.  A legitimate state is a state where all 

parts in the system are in synchrony.  The self-

stabilizing distributed-system clock synchronization 

problem is, therefore, to develop an algorithm (i.e., a 

protocol) to achieve and maintain synchrony of local 

clocks in a distributed system after experiencing 

system-wide disruptions in the presence of network 

element imperfections.  The convergence and 

closure properties address achieving and maintaining 

network synchrony, respectively.  Hereafter in this 

report, we use the term synchronization to mean self-

stabilizing clock synchronization in distributed 

systems. 

A thorough understanding of the 

synchronization of a distributed system has proven to 

be elusive for decades.  The main challenges 

associated with distributed synchronization are the 

complexity of developing a solution and proving the 

correctness of the solution.  The proposed solution 

must restore synchrony and coordinated operations 

after experiencing system-wide disruptions in the 

presence of network element imperfections and, for 

ultra-reliable distributed systems, in the presence of 

various faults.  A fault is a defect or flaw in a system 

component resulting in an incorrect state [1][2][3].  

Also, addressing network element imperfections is 

necessary to make a solution applicable to realizable 

systems.  In addition, a proposed solution must be 

proven to be correct.  In the absence of a paper-and-

pencil proof, the use of mechanized formal method 

techniques is a viable alternative. 

In [4] a solution is presented for an arbitrary 

network (digraph) in the absence of faults.  The 

system under study is an arbitrary, non-partitioned 

digraph ranging from fully connected to 1-connected 

networks of nodes while allowing for differences in 

the network elements.  This solution does not require 

any particular information flow nor imposes changes 

(e.g., embedding a directed spanning tree or rewiring) 

to the network in order to achieve synchrony.  The 

assumption of an absence of faults is equivalent to 

the assumption that all faults are detectable.  This 

departure from our previous work at the Byzantine 

extreme of the fault spectrum [5] is in part because of 

the niche use and the extra cost associated with the 

Byzantine faults.  Also, using authentication and 
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error detection techniques, it is possible to 

substantially reduce the effects of variety of faults in 

the system.  Furthermore, the classical definition of a 

self-stabilizing algorithm assumes generally that 

there are no faults in the system. 

In this report we present model checking efforts 

in support of the claims of [4].  In particular, this 

effort encompasses the verification of correctness of 

a bounded model of the protocol by confirming that a 

set of candidate systems self-stabilizes from any 

state.  This effort, furthermore, includes the 

verification of claims of determinism and linear 

convergence of the bounded model of the protocol 

with respect to the self-stabilization period.  Toward 

this objective, a number of abstractions and reduction 

techniques are devised to reduce the state space.  The 

model checking results of the bounded model of the 

protocol have validated the correctness of the 

protocol as they apply to the networks with 

unidirectional and bidirectional links.  In addition, the 

results have confirmed the claims of determinism and 

linear convergence. 

The following sections describe the model 

checking efforts in detail.  In Section 2 we provide a 

system overview.  We present the protocol and its 

description in Section 3.  Modeling specifications and 

abstractions used in describing a bounded model of 

this protocol are described in Section 4, where the 

underlying topology and network models are defined.  

In Section 5 we enumerate the propositions used and, 

finally, in Section 6, we present a summary of the 

model checking results and concluding remarks. 

2. System Overview 

We consider a system of pulse-coupled entities 

(e.g., oscillators, pacemaker cells) pulsating 

periodically at regular time intervals.  We model the 

system as a set of nodes that represent the pulse-

coupled entities and a set of communication links that 

represent their interconnectivity.  The underlying 

topology considered here is a network of K ≥ 1 nodes 

that exchange messages through a set of 

communication links.  Nodes are anonymous, i.e., 

they do not have unique identities.  All nodes are 

assumed to be good, i.e., actively participate in the 

synchronization process and correctly execute the 

protocol.  The communication links are assumed to 

connect a set of source nodes to a set of destination 

nodes with a source node being different than a 

destination node.  All communication links are 

assumed to be good, i.e., reliably transfer data from 

their source nodes to their destination nodes.  The 

nodes communicate with each other by exchanging 

broadcast messages.  Broadcast of a message by a 

node is realized by transmitting the message, at the 

same time, to all nodes that are directly connected to 

it.  The communication network need not guarantee 

any relative order of arrival of a broadcast message at 

the receiving nodes.  There is neither a central system 

clock nor an externally generated global pulse or 

message at the network level.  The communication 

links and nodes can behave arbitrarily provided that 

eventually the system adheres to the protocol 

assumptions (Section 3.4). 

2.1. Drift Rate () And The Logical Clock 

(LocalTimer) 

Each node is driven by an independent, free-

running local physical oscillator (i.e., the phase is not 

controlled in any way) and a logical-time clock (i.e., 

a counter), denoted LocalTimer, which locally keeps 

track of the passage of time and is driven by the local 

physical oscillator.  An oscillator tick, also called a 

clock tick, is a discrete value and the basic unit of 

time in the network.  An ideal oscillator has zero drift 

rate with respect to real-time, perfectly marking the 

passage of time.  Real oscillators are characterized by 

non-zero drift rates with respect to real-time.  The 

oscillators of the nodes are assumed to have a known 

bounded drift rate, , which is a small constant with 

respect to real-time, where  is a unitless non-

negative real value and is expressed as 0   << 1.  

The maximum drift of the fastest LocalTimer over a 

time interval of t is given by (1+)t.  The maximum 

drift of the slowest LocalTimer over a time interval of 

t is given by (1/(1+))t.  Therefore, the maximum 

relative drift of the fastest and slowest nodes with 

respect to each other over a time interval of t is given 

by δ(t) = ((1+) - 1/(1+))t. 

2.2. Communication Delay (D), Network 

Imprecision (d), And   

The communication latency between the nodes 

is expressed in terms of the minimum event-response 

delay, D, and network imprecision, d.  These 

parameters have units of real time clock ticks.  A 

message transmitted at real time t0 is expected to 



arrive at all destination nodes, be processed, and 

subsequent messages are generated within the time 

interval of [t0+D, t0+D+d].  Communication between 

independently clocked nodes is inherently imprecise.  

The network imprecision, d, is the maximum time 

difference among all receivers of a message from a 

transmitting node with respect to real time.  These 

two parameters are assumed to be bounded such that 

D  1 and d  0 and both have discrete values with 

units of real time clock tick.  The communication 

latency, denoted , is expressed in terms of D and d, 

and is constrained by  = (D+d) and so has units of 

real time clock ticks. 

2.3. Topology (T) 

A communication link, or simply link, is an edge 

in the graph representing a direct physical connection 

between two nodes.  A path is a logical connection 

between two nodes consisting of one or more links.  

A path-length is the number of links connecting any 

two nodes.  The general topology, T, considered is a 

strongly connected directed graph (digraph) 

consisting of K nodes, where each node is connected 

to the graph by at least one link, there is a path from 

any node to any other node, and the links are either 

unidirectional or bidirectional.  Furthermore, we 

assume there is no direct link from a node to itself, 

i.e., no self-loop, and there are no multiple links 

directly connecting any two nodes in any one 

direction. 

We use the terms network and graph 

interchangeably.  The following graph specific terms 

are used in the subsequent sections. 

 L, an integer value, is the number of links 

denoting the largest loop in the graph, i.e., 

the maximum value of the longest path-

lengths from a node back to itself visiting 

the nodes along the path only once (except 

for the first node which is also the last 

node). 

 W, an integer value, is the number of links 

signifying the width or diameter of the 

graph, i.e., the maximum value of the 

shortest path connecting any two nodes. 

For digraphs of size K > 1, L and W are bounded 

by 2 ≤ L ≤ K and 1 ≤ W ≤ K – 1. 

3. The Protocol 

In this section we enumerate protocol 

assumptions, properties, parameters, and describe the 

protocol in pseudo-code.  The general form of the 

distributed synchronization problem, S, is defined by 

the following septuple [4]. 

S = (K, T, D, d, , P, F) 

In other words, the distributed synchronization 

problem is a function of the number of nodes (K), 

network topology (T), communication delay (D), 

communication imprecision (d), oscillator drift rate 

(), synchronization period (P), and number of faults 

(F), respectively.  The solution to this problem is a 

protocol with convergence and closure properties, at 

a minimum, as discussed subsequently in this section.  

However, in this protocol we do not deal with faults. 

Each node is driven by an independent logical-

time clock, i.e., LocalTimer.  The clocks need to be 

periodically synchronized due to their inherent drift 

with respect to each other.  In order to achieve 

synchronization, the nodes communicate by 

exchanging Sync messages.  The periodic 

synchronization after achieving the initial synchrony 

is referred to as the resynchronization process 

whereby all nodes reengage in the synchronization 

process.  A node is said to time-out when its 

LocalTimer reaches its maximum value.  The 

resynchronization process begins when the first node 

(fastest node) times-out and transmits a Sync message 

and ends after the last node (slowest node) transmits 

a Sync message.  For ρ << 1, the fastest node cannot 

time-out again before the slowest node transmits a 

Sync message [4]. 

A node consists of a synchronizer and a set of 

monitors.  A Sync message is transmitted either as a 

result of a resynchronization timeout, or when a node 

receives Sync message(s) indicative of other nodes 

engaging in the resynchronization process.  The 

messages to be delivered to the destination nodes are 

deposited on communication links.  Although the 

network level measurements are real values, locally 

and at the node level, all protocol parameters have 

discrete values with the time-based terms having 

units of real time clock ticks.  The discretization is 

for practical purposes in implementing and model 

checking of the protocol. The following definitions 

and terms are used in the description and operation of 

the protocol. 



 The resynchronization period, denoted P, 

has units of real time clock ticks and is 

defined as the upper bound on the time 

interval between any two consecutive 

resets of the LocalTimer by a node. 

 Drift per t, denoted δ(t), has units of real 

time clock ticks and is defined as the 

maximum amount of drift between any 

two nodes for the duration of t, δ(t)  0.  In 

particular: 

o Drift per D, denoted δ(D), for the 

duration of one D, δ(D)  0. 

o Drift per , denoted δ(), for the 

duration of one , δ(  0. 

o Drift per P, denoted δ(P), for the 

duration of one period P, δ(P)  0. 

 The graph threshold, TS, is based on a 

specified graph topology and has units of 

real time clock ticks (see Section 3.1). 

 The  guaranteed  precision  or  simply  

precision  of  the network, π, 0 ≤ π < P, 

has units of real time clock ticks and is 

defined as the guaranteed achievable 

precision among all nodes. 

 The convergence time, denoted C, has 

units of real time clock ticks and is defined 

as the bound on the maximum time it takes 

for the network to converge, i.e., to 

achieve synchrony. 

 Precision between LocalTimers of any 

two adjacent nodes Ni and Nj denoted by 

ij and has units of real time clock ticks. 

 The initial synchrony is a state of the 

network and the earliest time when the 

precision among all nodes, upon 

convergence, is within π.  The initial 

synchrony occurs at time CInit. 

 The initial precision among LocalTimers 

of all nodes, Init, has units of real time 

clock ticks and, for all t  CInit, is defined 

as a measure of the precision of the 

network immediately after a 

resynchronization process. 

 The initial guaranteed precision among 

LocalTimers of all nodes, InitGuaranteed, has 

units of real time clock ticks and, for all t  

C, is defined as a measure of the precision 

of the network immediately after a 

resynchronization process. 

3.1. The Graph Threshold (TS) 

When a node receives a Sync message, except 

during a predefined window, referred to as the ignore 

window, it accepts the Sync message and undergoes 

the resynchronization process where it resets its 

LocalTimer and relays the Sync message to others.  

The ignore window provides a means for the protocol 

to stop the endless cycle of resynchronization 

processes triggered by the follow up Sync messages.  

We bound the ignore window to [D, TS).  The lower 

bound is due to the minimum event-response delay, 

D, and the upper bound, referred to as the graph 

threshold, TS, is a function of a specified graph 

topology and the maximum delay for a Sync message 

to return to the originating node after traversing the 

graph. 

3.2. Sync Message And Its Validity 

In order to achieve synchrony, the nodes 

communicate by exchanging Sync messages
1
.  When 

the system is in synchrony, the protocol overhead is 

at most one message per resynchronization period P.  

Assuming physical-layer error detections are dealt 

with separately, the reception of a Sync message is 

indicative of its validity in the value domain.  The 

protocol performs as intended when the timing 

requirements of the messages from every node are 

satisfied.  However, in the absence of faults, the 

reception of a Sync message is indicative of its 

validity in the value and time domains.  A valid Sync 

message is discarded after it is relayed to the 

synchronizer and has been kept for one local clock 

tick. 

3.3. The Monitor, The Synchronizer, And 

Protocol Functions 

A node consists of a synchronizer and a set of 

monitors.  To assess the behavior of other nodes, a 

node employs as many monitors as the number of 

nodes it is directly connected to with one monitor for 

each source of incoming messages.  A node neither 

uses nor monitors its own messages.  A monitor 

                                                      

1 Since only one message type is used for the operation of this 

protocol, a single bit suffices. 



keeps track of the activities of its corresponding 

source node.  Specifically, a monitor reads, evaluates, 

validates, and stores the last valid message it receives 

from that node.  Upon conveying the valid message 

to the local synchronizer, a monitor disposes of the 

valid message after it has been kept for one local 

clock tick.  The functions ValidateMessage() and 

ConsumeMessage(), Figure 1, are used by the 

monitors.  The function ValidSync() is used by the 

synchronizer. 

 

 

 

 

 

 

 

 

 

Figure 1.  The protocol functions. 

3.4. Protocol Assumptions 

The  following  are  protocol assumptions.   1)  

K  1.  2) All nodes correctly execute the protocol.  

3) All links correctly transmit data from their sources 

to their destinations.  4)  T is a non-partitioned, 

strongly connected digraph.  5) 0 ≤  << 1.  6) A 

message sent by a node will be received and 

processed   by   all   other   nodes   within  ,   where 

  = (D + d)  And 7) The initial values of the variables 

of a node are within their corresponding data-type 

range, although possibly with arbitrary values. 

3.5. The Self-Stabilizing Distributed Clock 

Synchronization Problem 

To simplify the presentation of this protocol, it 

is assumed that all time references are with respect to 

an initial real time t0, where t0 = 0, and for all t ≥ t0 

the system operates within the protocol assumptions.  

The maximum difference in the value of LocalTimer 

for all pairs of nodes at time t, Net(t), is determined 

by the following equation that accounts for the 

variations in the values of the LocalTimer across all 

nodes. 

r = (W + 1)( + δ()), 
LocalTimermin(x) = min (Ni.LocalTimer(x)), and 

LocalTimermax(x) = max (Ni.LocalTimer(x)), for all i. 

Net(t)= min ((LocalTimermax(t) - LocalTimermin(t)),  

       (LocalTimermax(t - r) - LocalTimermin(t - r))). 

The following symbols were defined earlier and 

are listed here for reference: 

 P  denotes  the  resynchronization  period, 

P > 0. 

 C denotes a bound on the maximum 

convergence time,  

 Net(t), for real time t, is the maximum 

difference of values of the LocalTimers of 

any two nodes (i.e., the relative clock 

skew) for t  t0, and 

 π, the synchronization precision, is the 

guaranteed  upper  bound  on Net(t), for all 

t  C. 

To show that a protocol is self-stabilizing, it has 

to be proven that there exist C and π such that the 

following self-stabilization properties hold. 

1. Convergence: Net(C)  π, 0  π < P  

2. Closure: For all t  C, Net(t)  π 

3. Congruence: For all nodes Ni, for all t  C, 

(Ni.LocalTimer(t) = ) 

implies Net(t)  π. 

4. Liveness: For all t  C, LocalTimer of 

every node sequentially 

takes on at least all integer 

values in [, P - π]. 

3.6. The Self-Stabilizing Distributed Clock 

Synchronization Protocol For Arbitrary 

Digraphs 

The protocol, executed by all nodes, is presented 

in Figure 2 and consists of a synchronizer and a set of 

monitors which execute once every local clock tick. 

 

 

 

 

ValidateMessage(): 

if (incoming message =  Sync) then 

{Message is valid, Store it.} 

ConsumeMessage(): 

if (stored message timer ≥ 1 tick) then 

{Message is invalid, Clear it.} 

ValidSync(): 

if (number of stored messages > 0) then 

return true, 

else 

      return false. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The self-stabilizing clock 

synchronization protocol for arbitrary digraphs. 

The following is a list of protocol parameters 

when all links are bidirectional. 

TS  (L+2)( + δ( 

P  3TS, for ρ = 0 

P  3(TS + δ(TS)), for L = K and ρ > 0 

P   max ((2K + 1)( + δ()), 3(TS + δ(TS))), for  

L = f(T) and ρ > 0 

The following is a list of protocol parameters for 

digraphs, i.e., when at least one link is unidirectional. 

TS  (K+2)( + δ( 

P  K(TS + δ(TS)) 

Regardless of the types of links in the network, 

the following is a list of protocol measures. 

CInit = 2P + K( + δ() 

Init ≤ (K - 1)( + δ() 

C = CInit + Init / P 

Wd ≤ InitGuaranteed ≤ W( + δ(), for all t  C 

π = InitGuaranteed + δ(P)  0, for all t  C, and  

0 ≤ π < P  

A trivial solution is when P = 0.  Since P > TS 

and the LocalTimer is reset after reaching P (worst-

case wraparound), a trivial solution is not possible. 

4. Verification Model 

There are two general formal methods 

approaches for the verification of the correctness of a 

protocol: theorem proving and model checking.  

Verification via theorem proving requires a deductive 

proof of the protocol.  Verification via model 

checking is based on specific scenarios and generally 

limited to a subset of the problem space.  In this 

report we focus on the model checking approach for 

its ease, feasibility, and quick examination of a subset 

of the problem space while attempting a more 

comprehensive proof via theorem proving. 

In this section, we present the details of the 

model checking efforts by describing models of the 

system components, their data structures, and the 

modeling simplification and abstractions techniques 

employed in the mechanical verification of the 

protocol.  The Symbolic Model Verifier (SMV) was 

used in modeling of this protocol on a PC with 4GB 

of memory running Linux [6].  SMV’s language 

description and modeling capability provide 

relatively easy translation from the pseudo-code.  

SMV semantics is synchronous composition, where 

all assignments are executed in parallel and 

synchronously.  Thus, a single step of the resulting 

model corresponds to a step in each of the 

components. 

A matter of concern in model checking is the 

ease of encoding the algorithm and assumed 

environment in the language of the model checker.  

In model checking, the state explosion, i.e., the time 

and space required to run the model checker, grows 

rapidly and eventually becomes infeasible as the size 

and complexity of the model grows.  Thus, 

abstraction must be employed with respect to the size 

of the model and real-time delays.  The algorithm 

described in this report is fairly subtle and must cope 

with many kinds of timing behaviors.  Model 

checking has been used to explore and verify 

distributed algorithms but faces certain difficulties 

[7][8][9][10].  One of the foremost challenges is a 

realistic representation of time as a continuous 

variable. 

As we elaborated earlier in this report, although 

the network level measurements are real values, 

locally and at the node level, all parameters are 

discrete.  Since continuous time model is 

impracticable, we looked for an abstraction 

employing discrete time.  Also, although we cannot 

Synchronizer: 

E1:  if (ValidSync() and (LocalTimer < D)) 

LocalTimer := , 

E2:  elseif ((ValidSync() and (LocalTimer  TS)) 

LocalTimer := , 
Transmit Sync, 

E3:  elseif (LocalTimer  P)       // time-out 

LocalTimer := 0, 

Transmit Sync, 

E4:  else 

LocalTimer := LocalTimer + 1. 

Monitor: 

case (message from the corresponding node) 

{Sync: 

ValidateMessage() 

 Other: 

Do nothing. 

} // case 

ConsumeMessage() 



yet prove the soundness of this abstraction, our 

decision to use a discrete model for time was critical 

to our ability to undertake this verification effort. 

4.1. Modeling Communication Links 

An explicit model of the communication link 

requires a separate entity (SMV module) with its own 

local memory, at a minimum, to store and forward a 

message.  This approach would readily exhaust the 

available 4GB memory even for small values of K 

and render the model checking effort ineffective.  To 

reduce state space, links are implicitly modeled and 

the outgoing message is kept within the transmitting 

node long enough for the receiving nodes to sample 

it. 

4.2. Modeling Monitors 

A monitor keeps track of activities of its 

corresponding source node and manages message 

validity.  Recall that we assume physical-layer error 

detections are dealt with separately and so, receiving 

a Sync message is indicative of its validity in the 

value and time domains.  In other words, we analyze 

the system at the point where the valid messages 

arrive at the Synchronizer of the node.  Since we 

assume no faulty nodes are present, an explicit model 

of the monitors is not necessary.  Instead, and to 

reduce the state space, monitors are implicitly 

modeled at the receiving nodes. 

4.3. Modeling Nodes 

The synchronizer describes the collective 

behavior of the node utilizing assessment results from 

its monitors.  The local measures within each node 

are used to keep track of timing of the self-

stabilization events.  Although the protocol 

parameters are defined with respect to real time, 

ultimately, in implementations they have to be 

translated into discrete values.  Discretization of the 

protocol parameters is performed using the ceiling 

operation.  In this protocol, all local variables and 

watchdog timers are discretized and represented by 

integer values.  These local variables are, therefore, 

measured with respect to the local clock. 

A parameterized node, NodeType, is introduced 

that executes the protocol and consists of local 

variables.  The NodeType’s data structure consists of 

Monitors, Synchronizer, and MessageOut.  The 

Synchronizer in turn consists of LocalTimer which 

represents the duration of time since the node has 

gone through the resynchronization process.  The 

MessageOut element represents the out going 

message of the node.  The range of values that these 

elements can hold are as follows. 

LocalTimer = {0 .. P} 

MessageOut = {NONE, Sync} 

In the SMV implementation, the parameters TS 

and P are customized for each node and are passed 

on to the node as input parameters (Section 4.6).  The 

set of unidirectional inputs/outputs links of the 

NodeType module in SMV, 

InputMessagesj/OutputMessagesh, specify the 

input/output links and source/destination of the 

messages, respectively.  Together, they define the 

network topology.  Because of the message validity 

assumptions and implicit model of the monitors, the 

related protocol functions are implemented at the 

NodeType.  These functions examine the number of 

available messages at the transmitting node utilizing 

implicit model of the communication links.  The 

function ValidSync() is an or operation over the set of 

input messages to node Ni. 

ValidSync() = OR (Nodej.MessageOut), i ≠ j 

4.4. Modeling Communication Delays 

Since we have assumed absence of malicious 

faulty nodes, the nodes react to each other’s messages 

within   and the minimum event-response delay, D, 

and the network imprecision, d, do not play 

distinctive roles in the synchronization process.  In 

other words, the effects of D and d in the 

synchronization process are incorporated in .  This 

assertion is not true in the presence of malicious 

faulty nodes.  These parameters, however, directly 

contribute to the guaranteed precision of the network. 

An explicit model of D and d requires more 

memory to store and delay a message both in the 

node and the communication link modules.  These 

explicit models would exponentially increase state 

space.  Recall that all system parameters are 

discretized to local ticks.  Therefore, an increase of 

one local tick in the communication delays directly 

increases the value of all other timing parameters.  As 

a result, this approach would readily exhaust the 

available 4GB memory even for small values of K 

and render the model checking effort ineffective.  To 



further minimize state space, D and d are chosen to 

be at their minimum values of 1 and 0 clock ticks, 

respectively.  As a result,  is at its minimum value of 

1 clock tick.  This simplification, consequently, 

implies that the local oscillators of the nodes are in 

phase with each other but it does not imply that the 

nodes are synchronized with each other. 

4.5. Modeling Clocks and Timers 

Each node has a logical clock, LocalTimer, that 

locally keeps track of time.  This logical clock is used 

in measuring the self-stabilization precision, π, across 

the nodes from an external view of the system.  A 

single clock per node suffices to advance a nodes’s 

LocalTimer.  Since   = 1 clock tick, a single clock 

suffices to advance all LocalTimers.  To further 

minimize the state space, all timers, LocalTimers and 

GlobalClock (Section 4.7), are incremented once per 

model checker cycle.  The SMV cycle, therefore, 

binds the whole system together, providing a means 

for advancing the GlobalClock and the LocalTimer at 

the nodes and providing an external view of the 

system at any time.  Although the use of SMV cycle, 

along with   = 1 clock tick, does not imply 

synchrony at the nodes, it does imply that the nodes 

are in phase with each other at the local oscillator 

level.  However, due to the inherent non-

deterministic execution of a model in the model 

checker, the order of execution of the nodes is not 

predetermined.  Since there is no control over the 

order of transmission of messages and the start of 

execution of the nodes at each model checker cycle, 

the nodes potentially broadcast and receive messages 

out of order of issuance. 

4.6. Modeling Drift 

In a realizable distributed system the clocks drift 

with respect to real time and each other.  As a result, 

any viable solution has to account for the clock drift 

rate, .  An explicit model of  would require dealing 

with real values.  Dealing either with real values or 

their equivalent integer values for  increases the 

state space drastically. 

To reduce state space, we have employed the 

implicit drift model (IDM) as described in [11] to 

model  implicitly.  In IDM approach, instead of 

explicitly specifying the drift rate for a node’s local 

oscillator and determining the node’s drift on a clock 

tick base, we determine the node’s effective period 

based on the drift rate and pass the effective period to 

the node.  Thus, each node will have its unique 

synchronization period with the proper amount of 

drift incorporated.  In this approach the effective 

synchronization period is directly applied to the 

nodes with at least one node being the slowest and 

another the fastest in the system with their maximum 

relative drift being δ(P).  One advantage of this 

modeling technique is that it drastically reduces state 

space.  Another advantage is that when a node’s 

behavior is not influenced by the behavior of other 

nodes for duration of time, the model checking time 

can advance to the end of that time interval
2
.  Thus, 

the IDM substantially improves the model checking 

performance. 

We apply the IDM approach to all parameters 

that are based on time including , TS, and P.  The 

amount of drift applied to a particular parameter is 

linearly  proportional  to  its  value.  Since  typically 

 << 1 and   is very small, the effect of  during   is 

negligible, i.e., δ() = 0.  Also, since all parameters 

are locally defined as integers, we set TS and P to 

large enough values, beyond their minimum values, 

to guarantee proportional presence of the effect of 

drift in TS and P in the nodes. 

As mentioned earlier, the use of SMV cycle, 

along with   = 1 clock tick, imply that the nodes are 

in phase with each other at the local oscillator level.  

However, applying the IDM implies that the nodes 

are out of phase with each other at the LocalTimer 

level.  Due to the inherent non-deterministic 

execution of a model in the model checker, the order 

of execution of the nodes is not predetermined, there 

is no control over the order of transmission of 

messages and the start of execution of the nodes at 

each model checker cycle, thus, the nodes potentially 

broadcast and receive messages out of order of 

issuance.  As a result, we believe our modeling 

techniques and abstractions properly capture the 

intended properties of a realizable system. 

4.7. Modeling Network 

Model checking is conducted on a given 

network consisting of a set of nodes that are instances 

                                                      

2  The concept of advancing time has been used in hardware 

description language (e.g., VHDL and Verilog) simulation tools 

for decades. 



of the NodeType and are interconnected to reflect a 

desired topology.  A single step of the resulting 

model corresponds to a step in each of the 

components.  A global clock, GlobalClock, is 

introduced to measure passage of time from the 

beginning of the operation and with respect to the 

real time and from the perspective of an external 

observer.  The GlobalClock is used to measure the 

convergence time, C, and is incremented once per 

model checker cycle.  The synchronization properties 

are examined at the network level and provide an 

external view of the system.  The properties 

examined to verify the claims of the protocol are 

described in Section 5. 

5. Propositions 

Computational tree logic (CTL), a temporal 

logic, is used to express properties of a system in this 

context.  In CTL formulas are composed of path 

quantifiers, E and A, and temporal operators, X, F, 

G, and U [12].  In this section the claims of 

convergence, closure, and congruence properties as 

well as the claims of maximum convergence time and 

determinism of the protocol are examined.  Although 

in the description of the protocol convergence and 

closure properties are stated separately, they are 

examined via one CTL proposition.  This proposition 

also expresses the claims of determinism and linear 

convergence.  Validation of this general CTL 

proposition requires examination of a number of 

underlying propositions.  In particular, since 

LocalTimer(t) is defined in terms of the LocalTimer of 

the nodes, examination of the properties that 

described proper behavior of the LocalTimer take 

precedence.  The variable ElapsedTime is used in 

these properties and is defined here. 

ElapsedTime = (GlobalClock ≥ ConvergenceTime) ; 

The GlobalClock is a measure of elapsed time 

from the beginning of the operation and with respect 

to the real time, i.e., external view.  The ElapsedTime 

is indicative of the GlobalClock reaching its target 

maximum value of ConvergenceTime. 

Proposition SystemLiveness:  This property 

addresses the liveness property of the system by 

examining whether or not time advances and the 

amount of time elapsed, ElapsedTime, has advanced 

beyond the predicted convergence time, 

ConvergenceTime. 

 

 

 

Proposition ConvergenceAndClosure: This 

proposition encompasses the criteria for the 

convergence and the closure properties as well as the 

claims of maximum convergence time and 

determinism.  This proposition specifies whether or 

not the system will converge to the predicted 

precision after the elapse of convergence time, 

ElapsedTime, and whether or not it will remain 

within that precision thereafter.  This and subsequent 

properties are expected to hold. 

The proper value of the AllWithinPrecision is 

determined by measuring the difference of maximum 

and minimum values of the LocalTimers of all nodes 

for the current tick and in conjunction with the result 

from the previous (W+1) ticks.  The expected 

difference of LocalTimers is the predicted precision 

bound. 

 

 

 

 

 

 

To eliminate trivial results and false positives, 

the following proposition is examined and the 

expected result is a false value.  This property 

specifies that after the elapse of convergence time, 

ElapsedTime, whether or not the system will not 

converge or if it converges, whether or not it drifts 

apart beyond the expected precision bound. 

 

 

 

 

Proposition Congruence: This property 

specifies the criteria for the congruence property of 

the protocol.  Unlike the convergence and closure 

properties that provide system view from the 

perspective of an external viewer, the congruence 

property provides a local view from the perspective 

AF (ElapsedTime) 

-- Determinism Property 

AF (ElapsedTime) ˄  

-- Convergence Property 

AG (ElapsedTime  → AllWithinPrecision) ˄ 

-- Closure Property  

AG ((ElapsedTime ˄ AllWithinPrecision) → 

 AX (ElapsedTime ˄ AllWithinPrecision)) 

AF (ElapsedTime) ˄  

AG (ElapsedTime  → AllWithinPrecision) ˄  

AG ((ElapsedTime ˄ AllWithinPrecision) →  

EX (¬AllWithinPrecision)) 



of a node by providing the necessary and sufficient 

conditions for the node to locally determine whether 

or not the system has converged.  The congruence 

property is essential in integration of this underlying 

self-stabilization protocol with higher level protocols 

in the system.  This property is described with respect 

to only one node, namely Node_1.  Since all nodes 

are identical, due to symmetry, the result of the 

proposition equally applies to other nodes. 

 

 

 

Proposition ProtocolLiveness: This property 

specifies the criteria for the liveness property of the 

protocol.  This property examines whether or not a 

node takes on all discrete values within an expected 

range.  Since all nodes are identical, due to 

symmetry, this property is described with respect to 

only one node, namely Node_1. 

 

 

 

 

 

 

6. Results And Conclusion 

Since in the protocol we do not limit the size of 

the network, K, model checking of all possible 

digraphs for all K, even for idealized scenarios (d = 0, 

 = 0), is simply impossible.  Model checking of all 

possible topologies for a given K is also a daunting 

task.  Given the limited resources available and to 

circumvent state space explosion, we had to limit the 

network size.  Nevertheless, to verify our claims of 

the correctness of the protocol, we have model 

checked all possible digraphs for smaller K.  

Additionally, we were able to model check some 

topologies for larger K.  Table 1 is a list of the model 

checked networks with their sizes and corresponding 

number  of  topologies  while  bounding  the  drift  to 

0    0.2.  Each row of the table corresponds to a 

given K and two types of topologies considered with 

the number of model checked graphs of the possible 

total combinations for the corresponding topology 

type in its column.  Sample SMV codes are available 

on my webpage. 

Table 1.  Model checked networks. 

K Topology 

(all links 

bidirectional) 

Topology 

(digraphs) 

2 1 of 1 1 of 1 

3 2 of 2 5 of 5 

4 6 of 6 83 of 83 

5 21 of 21 Single Directed Ring, 2 

Variations of Doubly 

Connected Directed Ring 

6 112 of 112 - 

7 Linear
*
 Linear

*
 

7 Star
*
 Star

*
 

7 Fully 

Connected
*
 

Fully Connected
*
 

7 

(3×4) 

Fully 

Connected 

Bipartite
*
 

Fully Connected 

Bipartite
*
 

7 Combo 4 of 4 

7 Grid - 

7 Full Grid - 

9 

(3×3) 

Grid - 

15 Star
*
 Star

*
 

20 Star
*
 Star

*
 

* For Linear, Star, and Fully Connected (Complete/ 

Bipartite) the links are bidirectional. 

A bounded model of A Self-Stabilizing 

Distributed Clock Synchronization Protocol For 

Arbitrary Digraphs is model checked using SMV 

where, for a set of digraphs, the entire state space is 

examined and verified to self-stabilize from an 

arbitrary state.  This SMV model checking effort was 

performed on a PC with 4GB of memory running 

Linux.  We described modeling concepts by 

abstracting the problem to discrete time and for 

realizable systems.  The model checking results have 

confirmed the correctness of the protocol as they 

apply to the networks with unidirectional and 

bidirectional links as described earlier (Section 2.3).  

Also, the results indicate that the protocol is 

applicable to realizable systems and practical 

applications.  In addition, the results confirmed the 

claims of determinism and linear convergence with 

respect to the synchronization period.  Because of the 

AF (ElapsedTime) ˄  

AG ((ElapsedTime ˄ (Node_1.LocalTimer= )) 
→ AX (ElapsedTime ˄ AllWithinPrecision))  

AF (ElapsedTime) ˄  

AG (((ElapsedTime) ˄ (Node_1.LocalTimer = i)) 

→ AX ((Node_1.LocalTimer = i) | 

(Node_1.LocalTimer = i+1))) ˄ 

AG (((ElapsedTime) ˄ (Node_1.LocalTimer= P)) 

 →  AX (Node_1.LocalTimer = 0)) 

For all i =  .. (P - π) 



model checking results, we conjecture that the 

protocol solves the general case of this problem for 

all K ≥ 1 and is applicable to realizable systems and 

practical applications.  Furthermore, this model 

checking effort has shown that, at a minimum, a 

deterministic solution for this problem exists. 
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