
MODEL CHECKING A SELF-STABILIZING SYNCHRONIZATION

PROTOCOL FOR ARBITRARY DIGRAPHS

Mahyar R. Malekpour, Langley Research Center, Hampton, Virginia, USA

mahyar.r.malekpour@nasa.gov

Abstract

This report presents the mechanical verification

of a self-stabilizing distributed clock synchronization

protocol for arbitrary digraphs in the absence of

faults. This protocol does not rely on assumptions

about the initial state of the system, other than the

presence of at least one node, and no central clock or

a centrally generated signal, pulse, or message is

used. The system under study is an arbitrary, non-

partitioned digraph ranging from fully connected to

1-connected networks of nodes while allowing for

differences in the network elements. Nodes are

anonymous, i.e., they do not have unique identities.

There is no theoretical limit on the maximum number

of participating nodes. The only constraint on the

behavior of the node is that the interactions with

other nodes are restricted to defined links and

interfaces. This protocol deterministically converges

within a time bound that is a linear function of the

self-stabilization period. A bounded model of the

protocol is verified using the Symbolic Model

Verifier (SMV) for a subset of digraphs. Modeling

challenges of the protocol and the system are

addressed. The model checking effort is focused on

verifying correctness of the bounded model of the

protocol as well as confirmation of claims of

determinism and linear convergence with respect to

the self-stabilization period.

1. Introduction

Synchronization algorithms are essential for

managing the use of resources and controlling

communication in a distributed system.

Synchronization of a distributed system is the

process of achieving and maintaining a bounded

skew among independent local clocks. A distributed

system is said to be self-stabilizing if, from an

arbitrary state, it is guaranteed to reach a legitimate

state in a finite amount of time and remain in a

legitimate state. A legitimate state is a state where all

parts in the system are in synchrony. The self-

stabilizing distributed-system clock synchronization

problem is, therefore, to develop an algorithm (i.e., a

protocol) to achieve and maintain synchrony of local

clocks in a distributed system after experiencing

system-wide disruptions in the presence of network

element imperfections. The convergence and

closure properties address achieving and maintaining

network synchrony, respectively. Hereafter in this

report, we use the term synchronization to mean self-

stabilizing clock synchronization in distributed

systems.

A thorough understanding of the

synchronization of a distributed system has proven to

be elusive for decades. The main challenges

associated with distributed synchronization are the

complexity of developing a solution and proving the

correctness of the solution. The proposed solution

must restore synchrony and coordinated operations

after experiencing system-wide disruptions in the

presence of network element imperfections and, for

ultra-reliable distributed systems, in the presence of

various faults. A fault is a defect or flaw in a system

component resulting in an incorrect state [1][2][3].

Also, addressing network element imperfections is

necessary to make a solution applicable to realizable

systems. In addition, a proposed solution must be

proven to be correct. In the absence of a paper-and-

pencil proof, the use of mechanized formal method

techniques is a viable alternative.

In [4] a solution is presented for an arbitrary

network (digraph) in the absence of faults. The

system under study is an arbitrary, non-partitioned

digraph ranging from fully connected to 1-connected

networks of nodes while allowing for differences in

the network elements. This solution does not require

any particular information flow nor imposes changes

(e.g., embedding a directed spanning tree or rewiring)

to the network in order to achieve synchrony. The

assumption of an absence of faults is equivalent to

the assumption that all faults are detectable. This

departure from our previous work at the Byzantine

extreme of the fault spectrum [5] is in part because of

the niche use and the extra cost associated with the

Byzantine faults. Also, using authentication and

mailto:mahyar.r.malekpour@nasa.gov

error detection techniques, it is possible to

substantially reduce the effects of variety of faults in

the system. Furthermore, the classical definition of a

self-stabilizing algorithm assumes generally that

there are no faults in the system.

In this report we present model checking efforts

in support of the claims of [4]. In particular, this

effort encompasses the verification of correctness of

a bounded model of the protocol by confirming that a

set of candidate systems self-stabilizes from any

state. This effort, furthermore, includes the

verification of claims of determinism and linear

convergence of the bounded model of the protocol

with respect to the self-stabilization period. Toward

this objective, a number of abstractions and reduction

techniques are devised to reduce the state space. The

model checking results of the bounded model of the

protocol have validated the correctness of the

protocol as they apply to the networks with

unidirectional and bidirectional links. In addition, the

results have confirmed the claims of determinism and

linear convergence.

The following sections describe the model

checking efforts in detail. In Section 2 we provide a

system overview. We present the protocol and its

description in Section 3. Modeling specifications and

abstractions used in describing a bounded model of

this protocol are described in Section 4, where the

underlying topology and network models are defined.

In Section 5 we enumerate the propositions used and,

finally, in Section 6, we present a summary of the

model checking results and concluding remarks.

2. System Overview

We consider a system of pulse-coupled entities

(e.g., oscillators, pacemaker cells) pulsating

periodically at regular time intervals. We model the

system as a set of nodes that represent the pulse-

coupled entities and a set of communication links that

represent their interconnectivity. The underlying

topology considered here is a network of K ≥ 1 nodes

that exchange messages through a set of

communication links. Nodes are anonymous, i.e.,

they do not have unique identities. All nodes are

assumed to be good, i.e., actively participate in the

synchronization process and correctly execute the

protocol. The communication links are assumed to

connect a set of source nodes to a set of destination

nodes with a source node being different than a

destination node. All communication links are

assumed to be good, i.e., reliably transfer data from

their source nodes to their destination nodes. The

nodes communicate with each other by exchanging

broadcast messages. Broadcast of a message by a

node is realized by transmitting the message, at the

same time, to all nodes that are directly connected to

it. The communication network need not guarantee

any relative order of arrival of a broadcast message at

the receiving nodes. There is neither a central system

clock nor an externally generated global pulse or

message at the network level. The communication

links and nodes can behave arbitrarily provided that

eventually the system adheres to the protocol

assumptions (Section 3.4).

2.1. Drift Rate () And The Logical Clock

(LocalTimer)

Each node is driven by an independent, free-

running local physical oscillator (i.e., the phase is not

controlled in any way) and a logical-time clock (i.e.,

a counter), denoted LocalTimer, which locally keeps

track of the passage of time and is driven by the local

physical oscillator. An oscillator tick, also called a

clock tick, is a discrete value and the basic unit of

time in the network. An ideal oscillator has zero drift

rate with respect to real-time, perfectly marking the

passage of time. Real oscillators are characterized by

non-zero drift rates with respect to real-time. The

oscillators of the nodes are assumed to have a known

bounded drift rate, , which is a small constant with

respect to real-time, where  is a unitless non-

negative real value and is expressed as 0   << 1.

The maximum drift of the fastest LocalTimer over a

time interval of t is given by (1+)t. The maximum

drift of the slowest LocalTimer over a time interval of

t is given by (1/(1+))t. Therefore, the maximum

relative drift of the fastest and slowest nodes with

respect to each other over a time interval of t is given

by δ(t) = ((1+) - 1/(1+))t.

2.2. Communication Delay (D), Network

Imprecision (d), And 

The communication latency between the nodes

is expressed in terms of the minimum event-response

delay, D, and network imprecision, d. These

parameters have units of real time clock ticks. A

message transmitted at real time t0 is expected to

arrive at all destination nodes, be processed, and

subsequent messages are generated within the time

interval of [t0+D, t0+D+d]. Communication between

independently clocked nodes is inherently imprecise.

The network imprecision, d, is the maximum time

difference among all receivers of a message from a

transmitting node with respect to real time. These

two parameters are assumed to be bounded such that

D  1 and d  0 and both have discrete values with

units of real time clock tick. The communication

latency, denoted , is expressed in terms of D and d,

and is constrained by  = (D+d) and so has units of

real time clock ticks.

2.3. Topology (T)

A communication link, or simply link, is an edge

in the graph representing a direct physical connection

between two nodes. A path is a logical connection

between two nodes consisting of one or more links.

A path-length is the number of links connecting any

two nodes. The general topology, T, considered is a

strongly connected directed graph (digraph)

consisting of K nodes, where each node is connected

to the graph by at least one link, there is a path from

any node to any other node, and the links are either

unidirectional or bidirectional. Furthermore, we

assume there is no direct link from a node to itself,

i.e., no self-loop, and there are no multiple links

directly connecting any two nodes in any one

direction.

We use the terms network and graph

interchangeably. The following graph specific terms

are used in the subsequent sections.

 L, an integer value, is the number of links

denoting the largest loop in the graph, i.e.,

the maximum value of the longest path-

lengths from a node back to itself visiting

the nodes along the path only once (except

for the first node which is also the last

node).

 W, an integer value, is the number of links

signifying the width or diameter of the

graph, i.e., the maximum value of the

shortest path connecting any two nodes.

For digraphs of size K > 1, L and W are bounded

by 2 ≤ L ≤ K and 1 ≤ W ≤ K – 1.

3. The Protocol

In this section we enumerate protocol

assumptions, properties, parameters, and describe the

protocol in pseudo-code. The general form of the

distributed synchronization problem, S, is defined by

the following septuple [4].

S = (K, T, D, d, , P, F)

In other words, the distributed synchronization

problem is a function of the number of nodes (K),

network topology (T), communication delay (D),

communication imprecision (d), oscillator drift rate

(), synchronization period (P), and number of faults

(F), respectively. The solution to this problem is a

protocol with convergence and closure properties, at

a minimum, as discussed subsequently in this section.

However, in this protocol we do not deal with faults.

Each node is driven by an independent logical-

time clock, i.e., LocalTimer. The clocks need to be

periodically synchronized due to their inherent drift

with respect to each other. In order to achieve

synchronization, the nodes communicate by

exchanging Sync messages. The periodic

synchronization after achieving the initial synchrony

is referred to as the resynchronization process

whereby all nodes reengage in the synchronization

process. A node is said to time-out when its

LocalTimer reaches its maximum value. The

resynchronization process begins when the first node

(fastest node) times-out and transmits a Sync message

and ends after the last node (slowest node) transmits

a Sync message. For ρ << 1, the fastest node cannot

time-out again before the slowest node transmits a

Sync message [4].

A node consists of a synchronizer and a set of

monitors. A Sync message is transmitted either as a

result of a resynchronization timeout, or when a node

receives Sync message(s) indicative of other nodes

engaging in the resynchronization process. The

messages to be delivered to the destination nodes are

deposited on communication links. Although the

network level measurements are real values, locally

and at the node level, all protocol parameters have

discrete values with the time-based terms having

units of real time clock ticks. The discretization is

for practical purposes in implementing and model

checking of the protocol. The following definitions

and terms are used in the description and operation of

the protocol.

 The resynchronization period, denoted P,

has units of real time clock ticks and is

defined as the upper bound on the time

interval between any two consecutive

resets of the LocalTimer by a node.

 Drift per t, denoted δ(t), has units of real

time clock ticks and is defined as the

maximum amount of drift between any

two nodes for the duration of t, δ(t)  0. In

particular:

o Drift per D, denoted δ(D), for the

duration of one D, δ(D)  0.

o Drift per , denoted δ(), for the

duration of one , δ(  0.

o Drift per P, denoted δ(P), for the

duration of one period P, δ(P)  0.

 The graph threshold, TS, is based on a

specified graph topology and has units of

real time clock ticks (see Section 3.1).

 The guaranteed precision or simply

precision of the network, π, 0 ≤ π < P,

has units of real time clock ticks and is

defined as the guaranteed achievable

precision among all nodes.

 The convergence time, denoted C, has

units of real time clock ticks and is defined

as the bound on the maximum time it takes

for the network to converge, i.e., to

achieve synchrony.

 Precision between LocalTimers of any

two adjacent nodes Ni and Nj denoted by

ij and has units of real time clock ticks.

 The initial synchrony is a state of the

network and the earliest time when the

precision among all nodes, upon

convergence, is within π. The initial

synchrony occurs at time CInit.

 The initial precision among LocalTimers

of all nodes, Init, has units of real time

clock ticks and, for all t  CInit, is defined

as a measure of the precision of the

network immediately after a

resynchronization process.

 The initial guaranteed precision among

LocalTimers of all nodes, InitGuaranteed, has

units of real time clock ticks and, for all t 

C, is defined as a measure of the precision

of the network immediately after a

resynchronization process.

3.1. The Graph Threshold (TS)

When a node receives a Sync message, except

during a predefined window, referred to as the ignore

window, it accepts the Sync message and undergoes

the resynchronization process where it resets its

LocalTimer and relays the Sync message to others.

The ignore window provides a means for the protocol

to stop the endless cycle of resynchronization

processes triggered by the follow up Sync messages.

We bound the ignore window to [D, TS). The lower

bound is due to the minimum event-response delay,

D, and the upper bound, referred to as the graph

threshold, TS, is a function of a specified graph

topology and the maximum delay for a Sync message

to return to the originating node after traversing the

graph.

3.2. Sync Message And Its Validity

In order to achieve synchrony, the nodes

communicate by exchanging Sync messages
1
. When

the system is in synchrony, the protocol overhead is

at most one message per resynchronization period P.

Assuming physical-layer error detections are dealt

with separately, the reception of a Sync message is

indicative of its validity in the value domain. The

protocol performs as intended when the timing

requirements of the messages from every node are

satisfied. However, in the absence of faults, the

reception of a Sync message is indicative of its

validity in the value and time domains. A valid Sync

message is discarded after it is relayed to the

synchronizer and has been kept for one local clock

tick.

3.3. The Monitor, The Synchronizer, And

Protocol Functions

A node consists of a synchronizer and a set of

monitors. To assess the behavior of other nodes, a

node employs as many monitors as the number of

nodes it is directly connected to with one monitor for

each source of incoming messages. A node neither

uses nor monitors its own messages. A monitor

1 Since only one message type is used for the operation of this

protocol, a single bit suffices.

keeps track of the activities of its corresponding

source node. Specifically, a monitor reads, evaluates,

validates, and stores the last valid message it receives

from that node. Upon conveying the valid message

to the local synchronizer, a monitor disposes of the

valid message after it has been kept for one local

clock tick. The functions ValidateMessage() and

ConsumeMessage(), Figure 1, are used by the

monitors. The function ValidSync() is used by the

synchronizer.

Figure 1. The protocol functions.

3.4. Protocol Assumptions

The following are protocol assumptions. 1)

K  1. 2) All nodes correctly execute the protocol.

3) All links correctly transmit data from their sources

to their destinations. 4) T is a non-partitioned,

strongly connected digraph. 5) 0 ≤  << 1. 6) A

message sent by a node will be received and

processed by all other nodes within , where

 = (D + d) And 7) The initial values of the variables

of a node are within their corresponding data-type

range, although possibly with arbitrary values.

3.5. The Self-Stabilizing Distributed Clock

Synchronization Problem

To simplify the presentation of this protocol, it

is assumed that all time references are with respect to

an initial real time t0, where t0 = 0, and for all t ≥ t0

the system operates within the protocol assumptions.

The maximum difference in the value of LocalTimer

for all pairs of nodes at time t, Net(t), is determined

by the following equation that accounts for the

variations in the values of the LocalTimer across all

nodes.

r = (W + 1)( + δ()),
LocalTimermin(x) = min (Ni.LocalTimer(x)), and

LocalTimermax(x) = max (Ni.LocalTimer(x)), for all i.

Net(t)= min ((LocalTimermax(t) - LocalTimermin(t)),

 (LocalTimermax(t - r) - LocalTimermin(t - r))).

The following symbols were defined earlier and

are listed here for reference:

 P denotes the resynchronization period,

P > 0.

 C denotes a bound on the maximum

convergence time,

 Net(t), for real time t, is the maximum

difference of values of the LocalTimers of

any two nodes (i.e., the relative clock

skew) for t  t0, and

 π, the synchronization precision, is the

guaranteed upper bound on Net(t), for all

t  C.

To show that a protocol is self-stabilizing, it has

to be proven that there exist C and π such that the

following self-stabilization properties hold.

1. Convergence: Net(C)  π, 0  π < P

2. Closure: For all t  C, Net(t)  π

3. Congruence: For all nodes Ni, for all t  C,

(Ni.LocalTimer(t) = )

implies Net(t)  π.

4. Liveness: For all t  C, LocalTimer of

every node sequentially

takes on at least all integer

values in [, P - π].

3.6. The Self-Stabilizing Distributed Clock

Synchronization Protocol For Arbitrary

Digraphs

The protocol, executed by all nodes, is presented

in Figure 2 and consists of a synchronizer and a set of

monitors which execute once every local clock tick.

ValidateMessage():

if (incoming message = Sync) then

{Message is valid, Store it.}

ConsumeMessage():

if (stored message timer ≥ 1 tick) then

{Message is invalid, Clear it.}

ValidSync():

if (number of stored messages > 0) then

return true,

else

 return false.

Figure 2. The self-stabilizing clock

synchronization protocol for arbitrary digraphs.

The following is a list of protocol parameters

when all links are bidirectional.

TS  (L+2)( + δ(

P  3TS, for ρ = 0

P  3(TS + δ(TS)), for L = K and ρ > 0

P  max ((2K + 1)( + δ()), 3(TS + δ(TS))), for

L = f(T) and ρ > 0

The following is a list of protocol parameters for

digraphs, i.e., when at least one link is unidirectional.

TS  (K+2)( + δ(

P  K(TS + δ(TS))

Regardless of the types of links in the network,

the following is a list of protocol measures.

CInit = 2P + K( + δ()

Init ≤ (K - 1)( + δ()

C = CInit + Init / P

Wd ≤ InitGuaranteed ≤ W( + δ(), for all t  C

π = InitGuaranteed + δ(P)  0, for all t  C, and

0 ≤ π < P

A trivial solution is when P = 0. Since P > TS

and the LocalTimer is reset after reaching P (worst-

case wraparound), a trivial solution is not possible.

4. Verification Model

There are two general formal methods

approaches for the verification of the correctness of a

protocol: theorem proving and model checking.

Verification via theorem proving requires a deductive

proof of the protocol. Verification via model

checking is based on specific scenarios and generally

limited to a subset of the problem space. In this

report we focus on the model checking approach for

its ease, feasibility, and quick examination of a subset

of the problem space while attempting a more

comprehensive proof via theorem proving.

In this section, we present the details of the

model checking efforts by describing models of the

system components, their data structures, and the

modeling simplification and abstractions techniques

employed in the mechanical verification of the

protocol. The Symbolic Model Verifier (SMV) was

used in modeling of this protocol on a PC with 4GB

of memory running Linux [6]. SMV’s language

description and modeling capability provide

relatively easy translation from the pseudo-code.

SMV semantics is synchronous composition, where

all assignments are executed in parallel and

synchronously. Thus, a single step of the resulting

model corresponds to a step in each of the

components.

A matter of concern in model checking is the

ease of encoding the algorithm and assumed

environment in the language of the model checker.

In model checking, the state explosion, i.e., the time

and space required to run the model checker, grows

rapidly and eventually becomes infeasible as the size

and complexity of the model grows. Thus,

abstraction must be employed with respect to the size

of the model and real-time delays. The algorithm

described in this report is fairly subtle and must cope

with many kinds of timing behaviors. Model

checking has been used to explore and verify

distributed algorithms but faces certain difficulties

[7][8][9][10]. One of the foremost challenges is a

realistic representation of time as a continuous

variable.

As we elaborated earlier in this report, although

the network level measurements are real values,

locally and at the node level, all parameters are

discrete. Since continuous time model is

impracticable, we looked for an abstraction

employing discrete time. Also, although we cannot

Synchronizer:

E1: if (ValidSync() and (LocalTimer < D))

LocalTimer := ,

E2: elseif ((ValidSync() and (LocalTimer  TS))

LocalTimer := ,
Transmit Sync,

E3: elseif (LocalTimer  P) // time-out

LocalTimer := 0,

Transmit Sync,

E4: else

LocalTimer := LocalTimer + 1.

Monitor:

case (message from the corresponding node)

{Sync:

ValidateMessage()

 Other:

Do nothing.

} // case

ConsumeMessage()

yet prove the soundness of this abstraction, our

decision to use a discrete model for time was critical

to our ability to undertake this verification effort.

4.1. Modeling Communication Links

An explicit model of the communication link

requires a separate entity (SMV module) with its own

local memory, at a minimum, to store and forward a

message. This approach would readily exhaust the

available 4GB memory even for small values of K

and render the model checking effort ineffective. To

reduce state space, links are implicitly modeled and

the outgoing message is kept within the transmitting

node long enough for the receiving nodes to sample

it.

4.2. Modeling Monitors

A monitor keeps track of activities of its

corresponding source node and manages message

validity. Recall that we assume physical-layer error

detections are dealt with separately and so, receiving

a Sync message is indicative of its validity in the

value and time domains. In other words, we analyze

the system at the point where the valid messages

arrive at the Synchronizer of the node. Since we

assume no faulty nodes are present, an explicit model

of the monitors is not necessary. Instead, and to

reduce the state space, monitors are implicitly

modeled at the receiving nodes.

4.3. Modeling Nodes

The synchronizer describes the collective

behavior of the node utilizing assessment results from

its monitors. The local measures within each node

are used to keep track of timing of the self-

stabilization events. Although the protocol

parameters are defined with respect to real time,

ultimately, in implementations they have to be

translated into discrete values. Discretization of the

protocol parameters is performed using the ceiling

operation. In this protocol, all local variables and

watchdog timers are discretized and represented by

integer values. These local variables are, therefore,

measured with respect to the local clock.

A parameterized node, NodeType, is introduced

that executes the protocol and consists of local

variables. The NodeType’s data structure consists of

Monitors, Synchronizer, and MessageOut. The

Synchronizer in turn consists of LocalTimer which

represents the duration of time since the node has

gone through the resynchronization process. The

MessageOut element represents the out going

message of the node. The range of values that these

elements can hold are as follows.

LocalTimer = {0 .. P}

MessageOut = {NONE, Sync}

In the SMV implementation, the parameters TS

and P are customized for each node and are passed

on to the node as input parameters (Section 4.6). The

set of unidirectional inputs/outputs links of the

NodeType module in SMV,

InputMessagesj/OutputMessagesh, specify the

input/output links and source/destination of the

messages, respectively. Together, they define the

network topology. Because of the message validity

assumptions and implicit model of the monitors, the

related protocol functions are implemented at the

NodeType. These functions examine the number of

available messages at the transmitting node utilizing

implicit model of the communication links. The

function ValidSync() is an or operation over the set of

input messages to node Ni.

ValidSync() = OR (Nodej.MessageOut), i ≠ j

4.4. Modeling Communication Delays

Since we have assumed absence of malicious

faulty nodes, the nodes react to each other’s messages

within  and the minimum event-response delay, D,

and the network imprecision, d, do not play

distinctive roles in the synchronization process. In

other words, the effects of D and d in the

synchronization process are incorporated in . This

assertion is not true in the presence of malicious

faulty nodes. These parameters, however, directly

contribute to the guaranteed precision of the network.

An explicit model of D and d requires more

memory to store and delay a message both in the

node and the communication link modules. These

explicit models would exponentially increase state

space. Recall that all system parameters are

discretized to local ticks. Therefore, an increase of

one local tick in the communication delays directly

increases the value of all other timing parameters. As

a result, this approach would readily exhaust the

available 4GB memory even for small values of K

and render the model checking effort ineffective. To

further minimize state space, D and d are chosen to

be at their minimum values of 1 and 0 clock ticks,

respectively. As a result,  is at its minimum value of

1 clock tick. This simplification, consequently,

implies that the local oscillators of the nodes are in

phase with each other but it does not imply that the

nodes are synchronized with each other.

4.5. Modeling Clocks and Timers

Each node has a logical clock, LocalTimer, that

locally keeps track of time. This logical clock is used

in measuring the self-stabilization precision, π, across

the nodes from an external view of the system. A

single clock per node suffices to advance a nodes’s

LocalTimer. Since  = 1 clock tick, a single clock

suffices to advance all LocalTimers. To further

minimize the state space, all timers, LocalTimers and

GlobalClock (Section 4.7), are incremented once per

model checker cycle. The SMV cycle, therefore,

binds the whole system together, providing a means

for advancing the GlobalClock and the LocalTimer at

the nodes and providing an external view of the

system at any time. Although the use of SMV cycle,

along with  = 1 clock tick, does not imply

synchrony at the nodes, it does imply that the nodes

are in phase with each other at the local oscillator

level. However, due to the inherent non-

deterministic execution of a model in the model

checker, the order of execution of the nodes is not

predetermined. Since there is no control over the

order of transmission of messages and the start of

execution of the nodes at each model checker cycle,

the nodes potentially broadcast and receive messages

out of order of issuance.

4.6. Modeling Drift

In a realizable distributed system the clocks drift

with respect to real time and each other. As a result,

any viable solution has to account for the clock drift

rate, . An explicit model of  would require dealing

with real values. Dealing either with real values or

their equivalent integer values for  increases the

state space drastically.

To reduce state space, we have employed the

implicit drift model (IDM) as described in [11] to

model  implicitly. In IDM approach, instead of

explicitly specifying the drift rate for a node’s local

oscillator and determining the node’s drift on a clock

tick base, we determine the node’s effective period

based on the drift rate and pass the effective period to

the node. Thus, each node will have its unique

synchronization period with the proper amount of

drift incorporated. In this approach the effective

synchronization period is directly applied to the

nodes with at least one node being the slowest and

another the fastest in the system with their maximum

relative drift being δ(P). One advantage of this

modeling technique is that it drastically reduces state

space. Another advantage is that when a node’s

behavior is not influenced by the behavior of other

nodes for duration of time, the model checking time

can advance to the end of that time interval
2
. Thus,

the IDM substantially improves the model checking

performance.

We apply the IDM approach to all parameters

that are based on time including , TS, and P. The

amount of drift applied to a particular parameter is

linearly proportional to its value. Since typically

 << 1 and  is very small, the effect of  during  is

negligible, i.e., δ() = 0. Also, since all parameters

are locally defined as integers, we set TS and P to

large enough values, beyond their minimum values,

to guarantee proportional presence of the effect of

drift in TS and P in the nodes.

As mentioned earlier, the use of SMV cycle,

along with  = 1 clock tick, imply that the nodes are

in phase with each other at the local oscillator level.

However, applying the IDM implies that the nodes

are out of phase with each other at the LocalTimer

level. Due to the inherent non-deterministic

execution of a model in the model checker, the order

of execution of the nodes is not predetermined, there

is no control over the order of transmission of

messages and the start of execution of the nodes at

each model checker cycle, thus, the nodes potentially

broadcast and receive messages out of order of

issuance. As a result, we believe our modeling

techniques and abstractions properly capture the

intended properties of a realizable system.

4.7. Modeling Network

Model checking is conducted on a given

network consisting of a set of nodes that are instances

2 The concept of advancing time has been used in hardware

description language (e.g., VHDL and Verilog) simulation tools

for decades.

of the NodeType and are interconnected to reflect a

desired topology. A single step of the resulting

model corresponds to a step in each of the

components. A global clock, GlobalClock, is

introduced to measure passage of time from the

beginning of the operation and with respect to the

real time and from the perspective of an external

observer. The GlobalClock is used to measure the

convergence time, C, and is incremented once per

model checker cycle. The synchronization properties

are examined at the network level and provide an

external view of the system. The properties

examined to verify the claims of the protocol are

described in Section 5.

5. Propositions

Computational tree logic (CTL), a temporal

logic, is used to express properties of a system in this

context. In CTL formulas are composed of path

quantifiers, E and A, and temporal operators, X, F,

G, and U [12]. In this section the claims of

convergence, closure, and congruence properties as

well as the claims of maximum convergence time and

determinism of the protocol are examined. Although

in the description of the protocol convergence and

closure properties are stated separately, they are

examined via one CTL proposition. This proposition

also expresses the claims of determinism and linear

convergence. Validation of this general CTL

proposition requires examination of a number of

underlying propositions. In particular, since

LocalTimer(t) is defined in terms of the LocalTimer of

the nodes, examination of the properties that

described proper behavior of the LocalTimer take

precedence. The variable ElapsedTime is used in

these properties and is defined here.

ElapsedTime = (GlobalClock ≥ ConvergenceTime) ;

The GlobalClock is a measure of elapsed time

from the beginning of the operation and with respect

to the real time, i.e., external view. The ElapsedTime

is indicative of the GlobalClock reaching its target

maximum value of ConvergenceTime.

Proposition SystemLiveness: This property

addresses the liveness property of the system by

examining whether or not time advances and the

amount of time elapsed, ElapsedTime, has advanced

beyond the predicted convergence time,

ConvergenceTime.

Proposition ConvergenceAndClosure: This

proposition encompasses the criteria for the

convergence and the closure properties as well as the

claims of maximum convergence time and

determinism. This proposition specifies whether or

not the system will converge to the predicted

precision after the elapse of convergence time,

ElapsedTime, and whether or not it will remain

within that precision thereafter. This and subsequent

properties are expected to hold.

The proper value of the AllWithinPrecision is

determined by measuring the difference of maximum

and minimum values of the LocalTimers of all nodes

for the current tick and in conjunction with the result

from the previous (W+1) ticks. The expected

difference of LocalTimers is the predicted precision

bound.

To eliminate trivial results and false positives,

the following proposition is examined and the

expected result is a false value. This property

specifies that after the elapse of convergence time,

ElapsedTime, whether or not the system will not

converge or if it converges, whether or not it drifts

apart beyond the expected precision bound.

Proposition Congruence: This property

specifies the criteria for the congruence property of

the protocol. Unlike the convergence and closure

properties that provide system view from the

perspective of an external viewer, the congruence

property provides a local view from the perspective

AF (ElapsedTime)

-- Determinism Property

AF (ElapsedTime) ˄

-- Convergence Property

AG (ElapsedTime → AllWithinPrecision) ˄

-- Closure Property

AG ((ElapsedTime ˄ AllWithinPrecision) →

 AX (ElapsedTime ˄ AllWithinPrecision))

AF (ElapsedTime) ˄

AG (ElapsedTime → AllWithinPrecision) ˄

AG ((ElapsedTime ˄ AllWithinPrecision) →

EX (¬AllWithinPrecision))

of a node by providing the necessary and sufficient

conditions for the node to locally determine whether

or not the system has converged. The congruence

property is essential in integration of this underlying

self-stabilization protocol with higher level protocols

in the system. This property is described with respect

to only one node, namely Node_1. Since all nodes

are identical, due to symmetry, the result of the

proposition equally applies to other nodes.

Proposition ProtocolLiveness: This property

specifies the criteria for the liveness property of the

protocol. This property examines whether or not a

node takes on all discrete values within an expected

range. Since all nodes are identical, due to

symmetry, this property is described with respect to

only one node, namely Node_1.

6. Results And Conclusion

Since in the protocol we do not limit the size of

the network, K, model checking of all possible

digraphs for all K, even for idealized scenarios (d = 0,

 = 0), is simply impossible. Model checking of all

possible topologies for a given K is also a daunting

task. Given the limited resources available and to

circumvent state space explosion, we had to limit the

network size. Nevertheless, to verify our claims of

the correctness of the protocol, we have model

checked all possible digraphs for smaller K.

Additionally, we were able to model check some

topologies for larger K. Table 1 is a list of the model

checked networks with their sizes and corresponding

number of topologies while bounding the drift to

0    0.2. Each row of the table corresponds to a

given K and two types of topologies considered with

the number of model checked graphs of the possible

total combinations for the corresponding topology

type in its column. Sample SMV codes are available

on my webpage.

Table 1. Model checked networks.

K Topology

(all links

bidirectional)

Topology

(digraphs)

2 1 of 1 1 of 1

3 2 of 2 5 of 5

4 6 of 6 83 of 83

5 21 of 21 Single Directed Ring, 2

Variations of Doubly

Connected Directed Ring

6 112 of 112 -

7 Linear
*
 Linear

*

7 Star
*
 Star

*

7 Fully

Connected
*

Fully Connected
*

7

(3×4)

Fully

Connected

Bipartite
*

Fully Connected

Bipartite
*

7 Combo 4 of 4

7 Grid -

7 Full Grid -

9

(3×3)

Grid -

15 Star
*
 Star

*

20 Star
*
 Star

*

* For Linear, Star, and Fully Connected (Complete/

Bipartite) the links are bidirectional.

A bounded model of A Self-Stabilizing

Distributed Clock Synchronization Protocol For

Arbitrary Digraphs is model checked using SMV

where, for a set of digraphs, the entire state space is

examined and verified to self-stabilize from an

arbitrary state. This SMV model checking effort was

performed on a PC with 4GB of memory running

Linux. We described modeling concepts by

abstracting the problem to discrete time and for

realizable systems. The model checking results have

confirmed the correctness of the protocol as they

apply to the networks with unidirectional and

bidirectional links as described earlier (Section 2.3).

Also, the results indicate that the protocol is

applicable to realizable systems and practical

applications. In addition, the results confirmed the

claims of determinism and linear convergence with

respect to the synchronization period. Because of the

AF (ElapsedTime) ˄

AG ((ElapsedTime ˄ (Node_1.LocalTimer= ))
→ AX (ElapsedTime ˄ AllWithinPrecision))

AF (ElapsedTime) ˄

AG (((ElapsedTime) ˄ (Node_1.LocalTimer = i))

→ AX ((Node_1.LocalTimer = i) |

(Node_1.LocalTimer = i+1))) ˄

AG (((ElapsedTime) ˄ (Node_1.LocalTimer= P))

 → AX (Node_1.LocalTimer = 0))

For all i =  .. (P - π)

model checking results, we conjecture that the

protocol solves the general case of this problem for

all K ≥ 1 and is applicable to realizable systems and

practical applications. Furthermore, this model

checking effort has shown that, at a minimum, a

deterministic solution for this problem exists.

References
[1] Girault, A.; Rutten, E.: Modeling Fault-tolerant

Distributed Systems for Discrete Controller Synthesis,

Electronic Notes in Theoretical Computer Science,

vol. 133, pp. 81-100, 2005.

[2] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.:

ROBUS-2: A fault-tolerant broadcast communication

system, NASA/TM-2005-213540, March 2005.

[3] Butler, R.: A primer on architectural level fault

tolerance, NASA/TM-2008-215108, February 2008.

[4] Malekpour, M.R.: A Self-Stabilizing Synchronization

Protocol For Arbitrary Digraphs, in The 17
th

 IEEE

Pacific Rim International Symposium on Dependable

Computing (PRDC), December 2011, to appear.

[5] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-

Stabilizing Protocol for Distributed Clock

Synchronization Systems, Eighth International

Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS06), November 2006.

[6] http://www-2.cs.cmu.edu/~modelcheck/smv.html

[7] Steiner, W.; Rushby, J.; Sorea, M.; Pfeifer, H.: Model

Checking a Fault-Tolerant Startup Algorithm: From

Design Exploration To Exhaustive Fault Simulation,

The International Conference on Dependable Systems

and Networks (DSN’04), 2004.

[8] Lönn, H.; and Pettersson, P.: Formal verification of a

TDMA protocol start-up mechanism, In Pacific Rim

International Symposium on Fault-Tolerant Systems,

pages 235–242, Taipei, Taiwan, Dec. 1997. IEEE

Computer Society.

[9] Malekpour, M.R.: Verification of a Byzantine-Fault-

Tolerant Self-Stabilizing Protocol for Clock

Synchronization, IEEE Aerospace Conference, March

2008.

[10] Steiner, W.; Dutertre, B.: Automated Formal

Verification of the TTEthernet Synchronization

Quality, 3
rd

 NASA Formal Method Symposium, April

2011.

[11] Malekpour, M.R.: Model Checking A Self-Stabilizing

Distributed Clock Synchronization Protocol for

Arbitrary Digraphs, NASA/TM-2011-217152.

[12] Clarke, E.M.; Emerson, E.A.: Design and synthesis of

synchronization skeletons using branching time

temporal logic, In Logic of Programs: Workshop,

Yorktown Heights, NY, May 1981, LNCS 131.

Springer, 1981.

31st Digital Avionics Systems Conference

October 14-18, 2012

http://www-2.cs.cmu.edu/~modelcheck/smv.html

