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ABSTRACT: Finite element analysis is performed on a mesh, based on computed 

geometry of a plain weave C/SiC composite with assumed internal stacking, to 

reveal the pattern of internal damage due to biaxial normal cyclic loading. The 

simulation encompasses intertow matrix cracking, matrix cracking inside the tows, 

and separation at the tow-intertow matrix and tow-tow interfaces. All these 

dissipative behaviors are represented by traction-separation cohesive laws. Not 

aimed at quantitatively predicting the overall stress-strain relation, the simulation, 

however, does not take the actual process of fiber debonding into account. The 

fiber tows are represented by a simple rule-of-mixture model where the reinforcing 

phase is a hypothetical one-dimensional material. Numerical results indicate that 

for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily 

determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the 

pattern of internal damage strongly depends on the loading path and initial stress, 

3) compressive loading inflicts virtually no damage evolution. 

 

KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle 

failure, smeared crack model, progressive damage, meso-mechanical analysis, 

finite element. 

 

 

INTRODUCTION 

 

Textile ceramic matrix composites (CMCs) have been proposed for thermal 

structures of reusable space vehicles, and high-temperature components of rocket 

engines and gas turbines. The state-of-the-art design methodology for such 

applications involves substantial conservatism because of the lack of homogeneous 

continuum models which can satisfactorily represent the pronounced loading 

history-dependent behavior of the composites, such as stress-strain relation, 

strength, and gas permeability. The loading-history dependence is a reflection of  
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widespread crack initiation, extension, closure, and opening in the composites. 

Formulation of existing homogeneous continuum models for textile CMCs are 

mostly motivated by experience with isotropic materials (e.g., damage driven by 

positive strains), simplistic micromechanical or mesomechanical considerations 

(e.g., damage deactivation), or succinct mathematical generalization. Within the 

framework of thermodynamics, Chaboche and Maire [1], and Halm, Dragon, et. al. 

[2] developed continuum damage mechanics (CDM) models for textile CMCs by 

postulating the elastic stiffness tensor as a unified function of a 2
nd

-ranked tensorial 

damage variable and some scalar damage variables, and by postulating a damage 

potential as a function of the thermodynamic forces associated with the damage 

variables. As a result of the normality rule used to derive damage evolution 

equations and the convexity of the postulated damage potential, the second law of 

thermodynamics is satisfied. Camus [3] modeled degradation of compliance tensor 

components individually; thus, the second law of thermodynamics can be readily 

satisfied by proposing individual damage criteria and evolution equations. It seems 

that without a general internal physics-based rationale, the complexity of the 

anisotropic brittle material behavior of textile CMCs cannot be completely covered 

by the existing homogeneous continuum models. Detecting and tracking many 

simultaneous three-dimensional fractures in a textile CMC is extremely difficult, if 

not entirely impossible, during a mechanical test. Therefore, mesomechanical 

simulations, or numerical experiments, of the complex internal cracking may be 

performed to obtain knowledge that is useful for formulation of a homogeneous 

continuum model. In addition, material responses that are required for identification 

of material parameters of a homogeneous continuum model but are difficult to 

obtain from mechanical tests can be computed by mesomechanical simulation. 

Substantial efforts focused on analyzing the response of unidirectional CMCs to 

longitudinal tensile loading by micromechanical approaches and yielded very 

instrumental results. An approximate closed-form nonsingular elastic stress 

distribution around a bridged matrix crack associated with a frictional fiber 

debonding zone in unidirectional CMCs under longitudinal tensile loading was 

derived from a shear-lag model in the classical work by Aveston and Kelly [4]. 

Curtin, Ahn, et al. [5] introduced into shear-lag analysis the number of flaws in a 

prismatic volume of matrix (or similarly in a fiber) that can propagate transversely 

throughout the material volume, as a function of applied axial stress, and the axial 

length and cross-sectional area of the material volume. In the analysis, the effect of 

fiber debonding on the stress field was evaluated by using fracture energy. Ismar 

and Streicher [6] performed finite element (FE) analysis of a unit cell of 

unidirectional SiC/SiC composites subject to longitudinal tensile loading, where 

element size-dependent strength probabilities are used to predict failure of the 

constituents and interfaces. Fiber cracks are assumed to be orthogonal to the fiber 

axis, while the orientation of matrix cracks is assumed to maximize the strain 

energy release rate. Elastic constants in a failed element are reduced according to 



 

the orientation of the crack, and a maximum of three orthogonal cracks is allowed 

in each matrix element. Yang and Mall [7] developed a cohesive-shear-lag model, 

where the fiber follows a softening cohesive law in order to represent the average 

effect of the increasing number of broken fibers. Along the debonded interface, a 

slip zone and a stick zone, at most, may be present when the model is subject to 

cyclic loading. In the cohesive-shear-lag model, the matrix crack spacing is used for 

normalization of length dimension but does not need to be known when applying 

the model. Therefore, damage progression is represented by the normalized 

debonded length and reduced fiber stiffness, which in conjunction with two other 

model parameters were backed out from a low-cycle fatigue test on a SiC fiber-

reinforced glass. It was shown in [7] that by using the backed-out parameters, 

stress-strain hysteresis loops were generated in good agreement with the 

experimental data for about ten thousand cycles. In general, the past work 

concerning longitudinal tensile loading indicated that consistency with fracture 

mechanics (or size-dependent failure) must be ensured in order to analyze damage 

progression in uniaxial CMCs at the microscopic level. In addition, fiber debonding 

and frictional sliding strongly influence the rate of decrease in matrix crack spacing 

as well as the hardening and hysteretic characteristics of the overall stress-strain 

response. 

Mesomechanical analysis of textile CMCs has to cope with internal physical 

processes at the mesostructural level. Complicated interactions are present among 

the reinforcing fiber tows. They are arranged in an interlacing architecture, and 

most of the tows are in contact with some others. The interaction between matrix-

rich regions and surrounding fiber tows is also critical because ceramic matrices, 

which usually play an important role (e.g., thermal protection) in CMC applications, 

may carry significant loads before they crack. Thus, one should expect complex 

progression of multiple cracks even in plain weave CMCs. As seen in the literature, 

the advancement in mesomechanical modeling of textile CMCs is very limited. 

Murthy, Mital, et al. [8] employed a computer code called W-CEMCAN to predict 

elastic, thermal expansion, and thermal conductivity properties of a five-harness 

satin weave SiC/SiC composite fabricated by chemical vapor infiltration (CVI). The 

code computes the effective behavior of the fiber tows in simplified 

micromechanical analysis, taking the fibers, matrix, and fiber coating into account, 

and then predicts the effective behavior of the fabric composite by treating a unit 

cell of the composite as an assembly of laminates. Sullivan, Murthy, et al. [9] 

backed out the respective in situ matrix moduli for a plain-weave C/SiC quasi-

isotropic laminate and a three-dimensional (3-D) angle interlock woven C/SiC 

composite as nonlinear functions of stress and temperature by comparing properties 

predicted by W-CEMCAN with measured properties through a trial-and-error 

procedure. Afterwards, a full set of 3-D composite properties could be predicted 

and used in FE analysis of four-point bending of beams made of the composites. 

Kuhn, Haan, et al. [10] developed a multiscale approach to predicting nonlinear 



 

response of CVI plain weave CMCs. The effective behavior of the fiber tows is 

computed by using the well-known Composite Cylinder Assembly model. The 

matrix, whether inside or outside the tows, is represented by a continuum damage 

mechanics model which has only one damage variable, standing for the microcrack 

density. The effective behavior of a plain weave composite is computed from a unit 

cell treated as a composite laminate with four nonuniform layers. Therefore, the 

mesomechanical problem is reduced to a two-dimensional problem, which is solved 

iteratively by the Rayleigh-Ritz method in [10]. From a theoretical standpoint, the 

approach developed in [10] is only suitable for the very early stage of material 

degradation, when there is no strain localization or mesocracks, such as cracks in 

matrix-rich regions or transverse cracks in the tows. Flores, Evans, et al. [11] 

developed an FE approach to predicting the effective stress-strain relation of CMCs 

with general fabric architecture. Line elements, assigned the longitudinal elastic 

stiffness of the fibers within a tow, are tied by multipoint constraint to solid 

elements, assigned nonlinear properties of an effective medium that complement 

the stiffness of the line elements and have to be calibrated. Thus, the effective 

medium properties are closely related to those of the matrix alone, but are not 

identical to them. The effects of matrix cracking, and interfacial debonding and 

sliding are also lumped into the effective medium behavior. As such, the effective 

medium should not be isotropic; however, an isotropic elastic-perfectly plastic 

model with the pressure-dependent Drucker-Prager yield criterion is chosen for the 

effective medium. It should be noted that due to the use of the smeared properties 

for the effective medium and the vanishing volume of the line elements, the 

resolution of the state of the matrix computed by the approach in [11] is only 

similar to that by the approach in [9]. 

An objective of this study is to reveal the pattern of damage in a CVI plain 

weave C/SiC composite subject to biaxial normal cyclic loading by FE 

mesomechanical analysis. The FE mesh is obtained from simulation of the in situ 

geometry, where tow-tow contact is ubiquitous. Four types of fracture, cracking in 

the matrix outside the fiber tows (intertow matrix), cracking in the matrix inside the 

fiber tows (simply called “tow matrix” below), tow-intertow matrix separation, and 

tow-tow separation, are computed in consideration of consistency with fracture 

mechanics. With the cracks computed, effects of large intertow matrix voids, tow-

tow contact, initial stress, compressive loading, and loading history can be sifted. 

Most physical quantities in the numerical examples are non-dimensional. Length 

is normalized by half the thickness of the plain weave under consideration, say, L. 

Quantities which have the same unit as stress are normalized by the longitudinal 

Young’s modulus of the fiber tows under consideration, say, . Therefore, energy 

dissipation per unit area of crack extension is normalized by L. 

 

 

COMPUTATIONAL MODEL 



 

 

In the present study, all the computations are carried out on the finite element 

mesh shown in Figure 1 by the Abaqus/Explicit
®
 program. The x and y axes of the 

rectangular coordinate system adopted for the analysis are aligned with the in-plane 

principal directions of the composite. The procedure for constructing the mesh is 

presented in detail in [12]. The internal geometry of the plain weave composite is 

obtained from a simplified simulation of the effects of interlacing and stacking. At 

the beginning of the simulation, each unconsolidated fiber tow is arranged along a 

piecewise linear path in a desired unit cell and pursuant to the fabric architecture. 

Moreover, the unconsolidated tows are assigned an idealized cross section with a 

reduced area so that the tows can be free of contact at the beginning. In the present 

study, identical fabric parameters are used for both principal directions, and the 

weaves are stacked up with perfect angular alignment and the maximum 

translational offset. A fictitious thermal expansion is then imposed on the 

transversely isotropic and elastic-ideally plastic tows to bring them into contact and 

their final shapes. By “growing” matrix on the fiber tows, a solid, which represents 

the intertow matrix volume and defines a large intertow matrix pore, is obtained 

(Figure 1). Large intertow pores are typically seen in CVI textile CMCs and are 

probable crack initiation sites [13]. The large intertow pore shown in Figure 1 

converges to a small through hole at the center. Additional possible matrix-crack 

initiation sites, surmised from the geometry, are also shown in Figure 1. Each of the 

additional sites is on the boundary of either an interlayer tow-tow contact or an 

intralayer tow-tow contact. As separate solids, the computed geometric entities are 

meshed with quadratic tetrahedral elements. Mesh deformation techniques are 

employed subsequently to improve the quality of the assembled mesh, which is 

incongruent at the tow-intertow matrix and tow-tow interfaces. The interfaces are 

modeled with the “cohesive contact surface” in Abaqus/Explicit not only to resolve 

the incongruence but also to simulate progressive interfacial damage. The fabric 

composite investigated herein has a fiber volume fraction of 40%, a matrix volume 

fraction of 57.1%, and a void volume fraction of 2.9%. The fiber tows have a fiber 

volume fraction of 54.8% and a matrix volume fraction of 45.2%. 

 

Material Model for Intertow Matrix 

 

The isotropic elastic behavior of the SiC matrix outside the fiber tows is 

characterized by its Young’s modulus, Em, and Poisson’s ratio, m. The coefficient 

of thermal expansion is denoted by m. The “fixed orthogonal crack” model is 

chosen to simulate intertow matrix fracture. For this model, the onset of a crack is 

determined by the criterion of maximum tensile stress, subject to the constraint that 

the direction of tensile stress is orthogonal to existing cracks at that material point. 

The direction normal to a newly formed crack is aligned with the maximum tensile 

stress. Therefore, at most three orthogonal cracks may develop at a material point. 



 

The energy dissipation caused by a crack in the intertow matrix is assumed to be 

governed by a linear softening traction-separation cohesive law which is defined by 

the tensile strength, Sm, and density of fracture energy dissipation (energy 

dissipation per unit area of crack extension), Gm. A “smeared-crack” approach is 

used by Abaqus/Explicit to implement the orthogonal crack model [14]. Therefore, 

the softening is converted into a stress-strain relation that has to be adjusted 

according to the size of the individual finite elements to account for fracture energy 

dissipation consistently. As a result of the smeared-crack approach, cracks appear in 

the fashion of strain localization in a numerical solution. General geometric 

nonlinearity, and the unilateral effect of crack opening and closure are all taken into 

account in the computation. Properties of SiC in bulk form, as shown below, are 

used in the present study: 

3181.Em  , 140.m  , C1054 6   /.m  

310711  .Sm , 
710416  .Gm  

 

Material Model for Fiber Tows 

 

The present study is not intended to quantitatively predict the overall stress-strain 

relation. It is known that the process of fiber-matrix debonding influences how fast 

the internal damage evolves along with the overall stress or strain. It is assumed 

herein that without reproducing the process of debonding, a sequence of internal 

damage patterns can be determined, although at what overall stress or strain the 

patterns appear cannot. As a simple approximation, the fiber tows are represented 

by a rule-of-mixture model where the reinforcing phase (fiber) is a hypothetical 

one-dimensional material and assigned the longitudinal Young’s modulus of the 

carbon fibers, Ef, and coefficient of thermal expansion, f. The fiber volume 

fraction and matrix volume fraction of the tows are denoted by tfv  and tmv , 

respectively. The matrix phase in the rule-of-mixture model can assume transverse 

isotropy in order to better estimate the phase stress state, and it is also simulated by 

the smeared-orthogonal-crack approach. The rule-of-mixture model implies a 

“surrogate” process of fiber-matrix debonding: Upon initiation of a bridged matrix 

crack at an integration point, debonding starts and completes in no time over the 

subdivision allotted to the integration point. On the other hand, all the stiffness 

terms of the carbon fibers other than the longitudinal normal stiffness are low and 

therefore ignored in the rule-of-mixture model. The simple material model for the 

fiber tows also implies that the minimum spacing between two bridged matrix 

cracks in a fiber tow is determined by the longitudinal length of the finite elements 

of the tow. This minimum spacing may not be physically possible. Therefore, 

caution should be taken when interpreting numerical results or creating a mesh. As 

the simplest approximation, the matrix in the rule-of-mixture model is assumed to 



 

be isotropic, and its Young’s modulus, tmE , Poisson’s ratio, tm , coefficient of 

thermal expansion, tm, and tensile strength, tmS , are assigned the values identical 

to those of the intertow matrix. The density of fracture energy dissipation of the 

matrix in the rule-of-mixture model, Gtm, is obtained by applying a reduction factor 

to Gm. The material constants required to model the fiber tows are listed below: 

%.vtf 854 , 7400.E f  , C1014 7   /.f  

%.vtm 245 , mtm EE  , mtm   , mtm    

mtmtm S.Sv 4520 , mtmtm G.Gv 40  

 

Material Model for Interfaces 

 

Each interface, either a tow-intertow matrix interface or a tow-tow interface, can 

be conveniently treated as a pair of cohesive contact surfaces within the 

Abaqus/Explicit program [14]. The easiest way to define contact surfaces is to 

define only one for each constituent (tow or intertow matrix) that has all the 

interfacial element faces of the constituent. Thus, it is also straightforward to create 

contact pairs. After damage initiates at an interfacial point, the interfacial behavior 

at that point is represented by a linear softening traction-separation cohesive law. 

Damage initiates when the “cohesive-surface quadratic stress criterion” variable 

(CSQUADSCRT) reaches one, i.e., 1CSQUADSCRT . CSQUADSCRT is defined 

by 
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where nt , st , and tt  denote the three orthogonal traction components acting on an 

interface, the normal component, first shear component, and second shear 

component, respectively, and 
max

nt , 
max

st , and 
max

tt  denote the corresponding 

ultimate strengths. If 0nt , 0nt ; if nt0 , nn tt  . When damage evolves 

after the initiation, each mode of the traction-separation response (e.g., normal 

traction vs. normal separation) follows a softening straight line (as the response 

envelope) toward the final failure. The area under the envelope for a mode 

represents the density of fracture energy dissipation due to that mode of damage. 

The densities of fracture energy dissipation are governed by the following quadratic 

law: 

1
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where nG , sG , and tG  denote the densities of fracture energy dissipation due to the 

normal mode, first shear mode, and second shear mode of damage, respectively, in 

a general damage process, and 
c

nG , 
c

sG , and 
c

tG  denote the densities of fracture 

energy dissipation in the respective pure-mode damage processes. Both the tow-

intertow matrix interfaces and tow-tow interfaces are modeled with the same set of 

material constants. 
max

nt , 
max

st , and 
max

tt  are obtained by applying a common 

reduction factor to the respective strengths of the SiC intertow matrix based on 

ultimate tensile strain failure. 
c

nG , 
c

sG , and 
c

tG  are obtained by applying respective 

reduction factors to Gm. The material constants required to model the interfaces are 

listed below: 

m

max

n S.t 70 , m

c

n G.G 50  

 mm

max

t

max

s S.tt  170 , m

c

t

c

s G.GG 60  

The above reduction factors are chosen so as to have the interfaces stronger and 

tougher than the “smeared” tow matrix, which has strength tmtmSv  and density of 

fracture energy dissipation tmtmGv . 

 

Boundary Conditions 

 

Boundary conditions for remote biaxial normal loading are applied to the 

boundaries of the finite element model (Figure 1). The bounding surfaces of the 

porosity are load-free. For convenience, a face of the CMC model is defined as the 

union of all the flat boundary surfaces that have the same orientation. All the six 

faces are free of tangential traction. The normal displacement on the x , y , and 

z  faces is set to zero. The normal displacement on the x , y , and z  faces is 

constrained to respective master nodes, one on each face. For the stress-controlled 

biaxial normal loading under consideration, the total normal load on the z  face, 

applied at the master node on that face, is set to zero, while the total normal loads 

on the x  and y  faces, applied at the respective master nodes, are prescribed. 

 

 

NUMERICAL RESULTS AND DISCUSSION 

 

Six load cases, shown in Figure 2, are simulated in this study by specifying the 

trajectories of the overall stress (composite stress), which is denoted by 

zyxjiij  , , , with  . The loading path for each case, as shown in Figure 2, starts 

from the origin (point 0) and then passes through the other points (points 1, 2, etc.) 

in the same sequence as the points are numerically marked. All the loading or 

unloading events are linear segments defined with two consecutively numbered 



 

points. The stress components at the points other than P, Q, and R are either 0, 
-4103.326 , or -4103.326-  . The stress at P is about 90% of ( xx , yy ) = 

( -4103.326 , -4103.326 ), while the stress at Q and R is about 260% of ( xx , yy ) 

= ( -4103.326 , 0) and about 260% of ( xx , yy ) = ( -4103.326 , -4103.326 ), 

respectively. 

Due to the smeared-crack approach, cracks appear as strain localization in 

numerical solutions. An estimate of separation strain at the end of linear softening 

for the intertow matrix, 


m , can be made by using the following equation: 

T
LS

G
m

mm

m
m   2

                                                     (3) 

where Lm is the length of subdivisions allotted to the integration points in a typical 

finite element of the intertow matrix, and T  is the temperature difference from the 

stress-free temperature. Similarly, an estimate of separation strain for the tow 

matrix, 


tm , can be calculated from the following equation: 

T
LS

G
tm

ttm

tm
tm   2

                                                     (4) 

where Lt is the length of subdivisions allotted to the integration points in a typical 

finite element of the fiber tows. When plotting contours of the computed maximum 

principal strain, contours with a value above *

m  in the intertow matrix and with a 

value above *

tm  in the fiber tows are assigned a gray color. Thus, the pattern of 

complete separation can be recognized by color easily. 

Interfacial damage can be recognized from contour plots of CSQUADSCRT on 

the bounding surfaces of the fiber tows. A series of CSQUADSCRT plots generated 

along a loading path may indicate progression of interfacial damage because once 

CSQUADSCRT reaches unity at any interfacial point (namely, interfacial damage 

initiates), its value at that location is fixed to one by the analysis code. Therefore, 

interfacial areas with the maximum value of one, which are colored red in the plots 

presented below, should monotonically extend. 

For the convenience of the description given below, the fiber tows running in the 

x direction in Figure 1 are called X’s and those in the y direction called Y’s. The 

interfaces between the X’s and Y’s are called X-Y’s, those between the X’s and 

intertow matrix called X-M, and those between the Y’s and intertow matrix called 

Y-M’s. The different interfaces meet at the boundaries of the X-Y’s. 

 

Load Cases 1 and 2 

 



 

Plots of the maximum principal strain in the intertow matrix and tow matrix, and 

CSQUADSCRT plots on the bounding surfaces of the fiber tows are generated at the 

points marked for load cases 1 and 2 shown in Figure 2. The plots are presented in 

Figures 3-6. Before the mechanical loadings start, a 750 C temperature drop is 

applied to induce an initial stress field in the model. The estimate of separation 

strain for the intertow matrix from Equation (3) is %.*

m 680 , and the estimate for 

the tow matrix from Equation (4) is %.*

tm 560 . The results at the end of the 

thermal loading are marked by point 0 in Figure 3. At point 0, strain concentration 

is present at the valleys of the intertow matrix void, but it is not severe enough to 

cause complete separation. On the other hand, limited interfacial damage is seen 

along the edges of the fiber tows and at the boundaries of the X-Y’s when the cool-

down ends. 

Complete cracking is first seen near the through hole, emanating along the 

valleys of the intertow matrix void. Later, complete tow matrix cracks (e.g., D1 in 

Figures 3 and 5) and intertow matrix cracks (e.g., D2 in Figures 3 and 5) form on 

the boundaries of the interlayer tow-tow contacts. These joined cracks are 

essentially curved, leave a widened damage footprint on the intralayer tow-tow 

contacts below or above, and cause distributed matrix damage in the tows below or 

above. The distributed matrix damage induces subsequent intertow matrix cracks 

(e.g., S in Figures 3 and 5) whose projections onto a fabric plane do not intersect 

the projections of the driving cracks (e.g., D1 and D2 in Figures 3 and 5). No crack 

initiates from the boundaries of the intralayer tow-tow contacts. This may be 

attributed to the nearby dominating cracks that originate from the intertow matrix 

void. The interfacial damage becomes steady at the extreme biaxial tensile load 

(points 1 and 2 in the load cases 1 and 2, respectively), and the steady interfacial 

damage on the X-M’s and Y-M’s are less severe than on the X-Y’s. 

The pattern of the internal damage caused by load case 1 shows essential 90-

cyclic symmetry, while load case 2 does not induce the cyclic symmetry. Moreover, 

the major cracks caused by load case 2 are notably different from those by load case 

1 in terms of shape. For load case 2, the “older” cracks, which form during the first 

loading event (from point 0 to point 1), continue to evolve during the second 

loading event (from point 1 to point 2). Being not orthogonal to the older cracks, 

the “newer” cracks, which form during the second loading event, appear to be 

retarded by the evolving older cracks. 

Residual crack opening is notable when the model is unloaded, attributed to the 

initial tensile stress state in the matrix. No damage evolution is observed during the 

compressive loading events of both load cases. Thus, the plots for the extreme 

biaxial compressive loading (points 3 and 5 in load cases 1 and 2, respectively) 

serve as clear images of the severe tensile damage that can filter out. The images 

suggest that the damage incurred by the extreme biaxial tensile loading of case 1 is 

more severe than by the extreme biaxial tensile loading of case 2. 



 

The simulations for load cases 1 and 2 conclude that for the plain weave C/SiC 

composite, the pattern of internal damage strongly depends on the loading path. 

 

Load Cases 3, 4, and 5 

 

It is reported in [12] that uniaxial compressive loading causes evolution of 

interfacial damage in a typical plain weave CMC whose fiber tows have transverse 

stiffness greater than that of the intertow matrix. The tows in the C/SiC composite 

under consideration are more compliant on the transverse plane than the SiC 

intertow matrix. No damage evolution is observed in the C/SiC composite during 

the compressive loading events of cases 1 and 2. Load cases 3, 4, and 5 (Figure 2), 

all with the preceding 750 C temperature drop, are intended to investigate the issue 

further. Load case 5 is similar to load case 1; however, the unloading in load case 5 

starts with significantly less interfacial damage. On the other hand, compressive 

loading starts immediately from the initial stress state for cases 3 and 4. All the 

simulations conclude no damage evolution during the uniaxial or biaxial 

compressive loadings. 

 

Load Case 6 

 

The loading process of case 6 (Figure 2) starts out from the intact material state; 

it is not preceded by the cool-down. For load case 6, the estimates of separation 

strain for the intertow matrix and tow matrix from Equations (3) and (4) are 

%.*

m 021  and %.*

tm 900 , respectively. In the absence of the initial stress, the 

applied load levels are elevated in order to generate an extent of damage similar to 

what is observed in load case 2. The striking effects of the initial stress emerge from 

a straightforward comparison of Figure 5 with Figure 7. Without the initial stress, 

the complete cracks are essentially straight, and the “newer” cracks are normal to 

the “older” cracks, which may lead to weaker interaction between the “newer” and 

the “older”. Thus, the newer cracks can reach nearly as far as the older cracks, and a 

pattern of nearly 90-cyclic symmetry eventually takes shape. The major deviation 

from the cyclic symmetry is the obviously shorter cracks along the valleys of the 

intertow matrix void that are essentially parallel with the x axis. These cracks do not 

start from the through hole; instead, they branch from the older cracks and progress 

toward the hole as indicated by the arrows in Figure 7. 

 

 

CONCLUDING REMARKS 

 

For the assumed stacking of the C/SiC plain weaves, the matrix-crack initiation 

sites are primarily determined by the large intertow matrix voids and interlayer tow-



 

tow contacts. The numerical results suggest the importance of modeling the 

geometry and interfacial separation, which is the motive in using the computed 

geometry and cohesive contact surfaces for the present study. The simulations also 

conclude that for the plain weave C/SiC composite, the pattern of internal damage 

strongly depends on the loading path and initial stress. 

This paper demonstrates a numerical mesomechanical approach to obtaining the 

pattern of damage in fabric CMCs, which is useful for formulation of homogeneous 

continuum models but cannot be easily experimentally determined. Quantitative 

prediction of the stress-strain relation of fabric CMCs, which is outside the scope of 

this study, requires a material model that can represent the nonlinear hardening and 

hysteretic behavior of the fiber tows. Some mesh sensitivity due to the 

implementation of the smeared crack approach is present in the numerical solutions. 

To enhance the solution reliability, other more advanced candidates, e.g., extended 

finite element method, can be employed in future study. Computational time is a 

challenging issue to the presented numerical solutions. Judicious model reduction 

may be performed in order to reduce computational time after sufficient 

characteristics of detailed solutions are known, provided that the ultimate objective 

is primarily concerned with the effective behavior. 
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Figure 1. Finite element mesh based on computed in situ geometry and possible matrix-

crack initiation sites. 

 

 

 
 

Figure 2. Load cases. Cases 1-5 are preceded by a 750 C cool-down. 



 

 
 

Figure 3. Case 1. Complete-separation regions are colored gray in the maximum principal 

strain plots. Damage-initiation areas are colored red in the CSQUADSCRT plots. 
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Figure 4. Case 1. Complete-separation regions are colored gray in the maximum principal 

strain plots. Damage-initiation areas are colored red in the CSQUADSCRT plots. 
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Figure 5. Case 2. Complete-separation regions are colored gray in the maximum principal 

strain plots. Damage-initiation areas are colored red in the CSQUADSCRT plots. 
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Figure 6. Case 2. Complete-separation regions are colored gray in the maximum principal 

strain plots. Damage-initiation areas are colored red in the CSQUADSCRT plots. 
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Figure 7. Case 6. Complete-separation regions are colored gray in the maximum principal 

strain plots. Damage-initiation areas are colored red in the CSQUADSCRT plots. 
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