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Abstract—The paper presents a prediction-identification model In this paper, we extend the approach to the systems with
based adaptive cont_rol method for uncertain systems With.t'he time varying parameters using a prediction (or identifmali
varying parameters in the presence of bounded external dist- model based approach. The parameters are assumed to be
bances. The method guarantees desired tracking performaecfor . .
the system’s state and input signals. This is achieved by feiag bounded and vary with bounded derlvatN(_es, no matter how
back the state prediction error to the identification model. It large these bounds are. The parameter estimates are geherat
is shown that the desired closed-loop properties are obtagd using the state prediction error as in the case of convealtion
with fast adaptation when the error feedback gain is selec® indirect adaptive control schemes, which is the reason oena
proportional to the square root of the adaptation rate. The the approach indirect M-MRAC. However, our prediction

theoretical findings are confirmed via a simulation example. del diff f th fi | b dicti
Index Terms—Time-varying parameters, guaranteed transient moael difters from the conventional ones Dy a prediction

performance, disturbance rejection; error feedback term, which turns out to play the same role
as the tracking error feedback term plays in the direct M-
|. INTRODUCTION MRAC approach. Hence, the desired closed-loop behavior

&an be achieved with fast adaptation by selecting a proper

Adapuve_control has b_gen considered as a promising te.error feedback gain, which also separates the time scaleeof t
nology to improve stability and performance of uncertain

N . . adaptive estimation from that of the system’s dynamics.
systems. However, limitations of conventional adaptivehme ; .
. The rest of the paper outlines the properties of the proposed
ods (see for example [1]) have prevented them to be Wldelhl

. o direct M-MRAC control architecture and demonstrates the
adopted in safety-critical systems.

. L benefits of it in a simulation example.
During past two decades majority of the efforts have been P

directed to improving the transient of the tracking error Il. PROBLEM STATEMENT

(see for example recent results in [2], [4], [5], [9] for the Consider the system

systems with time varying uncertainties), but not the aantr . O — Aw(t) + BA(L N4 K(t " dlt 1

signal, the behavior of which significantly contributes ke t 2(1) o(t) + BA() [u(t) + K(t)g(=(t) +d(®)] (1)

aforementioned limitations. with x(0) = x¢, wherex € R" is the state of the system,
These limitations have been addressed in fheadaptive @ € R is the control, A € R"*" and B € R"*? are

control framework [3]. It has been shown that the desirediven constant matrices withl being Hurwitz and(4, B)

transient can be obtained via fast adaptation and a low-p&8gtrollable,g : k" — R’ is continuously differentiable,

filter, which a priori sets the bandwidth, within which thed : Rt — R?*? is positive definite with bounded and

uncertainties in the system can be compensated for. piecewise continuous unknown entries, which have bounded
An alternative method, which guarantees desired transigi@fivatives K : R* — R?*? is an unknown parameter matrix

behavior of the closed-loop system, has been proposed.in th boundeo_l and piecewise continuous .entrles, which have

It is based on the modification of the reference model Hjpunded derivatives, and : R* — R? is bounded and

the tracking error feedback, and is called modified refezenBiecewise continuous disturbance with a bounded derwativ

model MRAC (M-MRAC). The idea behind the method was The control objective is to design a control input such that

to drive the reference model toward the system proportiorfd® System (1) tracks the reference model.

to the trac_kinlg error, thus prevgntri]ng trfwe system’sOI altt_emEt T (t) = Az, (t) + Br(t) )

to aggressively maneuver toward the reference model in the B oy .

initial stage of the process. It turns out that the error bzt W' Zm(0) = @mo, wherer : BT — R7 is bounded and

gain determines the damping in the control signal dynamic%ecew'se continuous command with a bounded derivative.

whereas the adaptation rate determines the frequency. Thi)s,Ne notice that the system (1) can be represented in the form

allows the designer to choose proper values for the parasaete z(t) = A=z(t)+ Br(t)
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I1l. PREDICTION MODEL computed along the trajectories of the prediction erroragyn
We introduce the following adaptive prediction model €S (8) and the adaptive laws (6), satisfies the inequality

x(t) = Az(t)+ Br(t) 65) V() < —&"(t)Qx(t) — 2kz" (t)Px(t) (11)
+ BA@®)[u(t) + O)f(z,r) + d(t)] + ki(t) + 2y M (0T (®)A()O(t)) + 2v=1d " (HA(1)d(1)
with &(0) = &, where(t) = a(t) — &(t) is the prediction + old WAGAE) + 4 e ((:)T(t)[\(t)é(t)) .

error, k > 0 is a design parameteA(t), O(t) and d(t) are
the estimates of the unknown quantities, generated acaprdihe projection operator in the adaptive laws (6) guarantees
to adaptive laws the mequalmesﬂ@( )| < 9, |LA( )< A* and ||d(t)| <
d*. Therefore||O(t)|| < 20*, |A®)|| < 2X*, ||d(t)|| < 2d*

. - T
and2tr (07 (H)A(1)O(t))+2d (H)A(t)d(t)+d (H)A(t)d(t)+
Mty = ~Pr(A@), BTPE(Ou(t) + O f@m]T) & (6T(MAMO®) < cz. Thatis

o) = vPr(6(t), BT Pa(t)f T (2,7))

d(t) = ~Pr (Ei(t), BTPi'(t)), (6) V(t) < —&" (1)Q&(t) — 2k&" (t)PZ(t) +~ 'ea.  (12)

where~ > 0 is the adaptation rateP = P" > 0 is the on
solution of the Lyapunov equatiof’ P+PA = —( for some (
Q=Q" >0,andPr (-, -) denotes the projection operator [7]

the other hand we haved (H)A(t)d(t) -+
() + AT (DAt )) < 1. It follows that

which is defined a®r (6, y) = [I — G(A)]y, where V(t) < fﬁT( )Pm (t) + v 'e1. Therefore, ifV(r) > v~ 'e,
o for some 7 then &' (r)Pz'(r) > (2ky)~lcz, which

0, if 90(9) <0 . implies thatV(r) < 0. Since £(0) = O |t follows that

a@) =4 0 ) if p(0) >0, Vol (0)y <0  V(0) <y 'e; <y e ThereforeV (t) < 4~ 'c for all t > 0.
7Vﬁ<v"§£”§9>¢(é), if ©(0) >0, Vo' (B)y >0 Since[|&(t)[|2 < &' (t)PE(t)/Amin(P) < V(£)/Amin(P),

the inequality (9) follows. [ ]

with the notatioano(é) _ nggé), and the smooth convex It can be observed from Lem_ma 3.2_that the. state predictiqn

error can be decreased as desired by increasing the adaptati
functions o(0) is given by p(f) = M With Opmax rate, when the prediction model is precisely initialized. The
denoting the norm bound imposed o the parameter matf¥xt lemma shows that the initialization error results in an
6 and ey denoting the convergence tolerance. The projectigiditive exponentially decaying term.

operator has the following properties R Lemma 3.3: If &y # =0, theni(t) satisfies the bound
Lemma 3.1: [7] Let 6y € Qp = {0 € R" | ¢(d) < 0}, and

let the parametefi(t) evolve according to the dynamics )] < / ekt 4 / (13)

0(t) =Pr((t), y), O(to) € Q. )
) j ) wherec; = |V(0) — £|, andV (¢) is defined by (10).
Then 1)0(t) € Q1 = {6 € R™ | (d) < 1} or [|(t)] < Proof: Usmg fo sameV() as in Lemma 8.2 and

o Tfor all t > to, where§” = VI+e€ bmax, 2) [0(t) = following the same steps one can arrive to the inequality
6o] ' [Pr(6(t), y) —y] <0 forall t > to.

It is straightforward to verify that V(t) < —2k[V(t) =7 'er] + v tea, (14)
(t) = (A-kDa(t )+ BA®)© (t)f(A )+ El(t)] integration of which results in
+ BA(D)[u(t) +O(t) f(z,r) +d(t)], (8)
where@(t) = O(t) — O(t), A(t) = A(t) — A(t) andd(t) = V(t) < [V(O) - s] e 2 +$ < cze M 4 % (15)

d(t) — d(t) are the estimation errors.

Lemma 3.2 If &y = =, then the prediction erro&(t) Recalling that|z(¢)||?> < V(t)/Amin(P), we readily obtain
satisfies the bound

- c 1 - 1 . C
500 < 5775 © I8 < | 5y feae ™+ . (16)

wherec = c1 + 2, c1 = AN*d*2 + AN0*2 + 4N*2,

and  Taking into account the inequalitya + b < v/a-+ v/ for any

* Qs O *2 *2
c2 = NG + AN d"dg + 4AGd™ + 4NG0 a >0, b>0, the bound (13) is concluded. n
Proof: The derivative of the candldate Lyapunov function Since the effect of the prediction model initializationaarr
( )&( ) (10) decays exponentially with the rate which is assumed to

V() = t)P ~1d
®) w,l() :f(T) 7 () be set to large values for the fast adaptation, in the next
+ vt (@ (OAB)O(t) + AT (L)A(t )) : derivations we assume that = x.



IV. CONTROL DESIGN

Since the reference model is designed to satisfy the ro-
bustness and performance specifications, one would nigtural
select the control signal

u(t) = —O(t) f(z,r) — d(t).

to achieve the control objective, if the system (3) were com-
pletely known. Obviouslyi(t) is notimplementable, therefore
its adaptive version

a(t) = -0 (1) f(x,r) - d(t)

(17)

(18)

is used. When this control signal is applied, the prediction
model (5) reduces to the modified reference model introduced
in the M-MRAC architecture, that is

z(t) = Az(t) + Br(t) + kx(t) (19)

Lemma 4.1: Let the system (3) be controlled by the adap-
tive controla(t) (18). Then closed loop signals are bounded.
Proof: Under the action of the adaptive contrat),
the error between the prediction model and reference mode

en(t) = &(t) — x,(¢t) satisfies the equation

em(t) = Aen () + Ni(t).

Since A is Hurwitz, andz(¢) is bounded according to Lemma
3.2, it follows thate,,(t) is bounded. Since the input(t)
is bounded, the reference model’s statg (¢) is bounded,
therefore the predicted staigt) is bounded as well. Then, it
follows that the system’s state(t) is bounded. The parameter
estimates are guaranteed to be bounded by the projectiol
operator, thereforé(t) is also bounded. [ |
Lemma 4.2: Let the system (3) be controlled by the con-
troller (18), which is defined by the prediction model (5) and
the adaptive law (6). Then

~ — 1
@) < Bre™" + B2y~ 2,

(20)

(21)
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Fig. 2. M-MRAC rate tracking performance with = 1000.

ag and a3 such that|s(t)] < as and ||z2(t)]| < ag for all

where@u(t) = u(t) — @(t), andvy, B and B, are positive 0 <t < oc. Hence, (22) can be considered as a second order

constants to be specified in the proof.

linear system inu(t) with time varying coefficients, where

Proof: It is easy to show thaii(¢) satisfies the equation the adaptation rate determines the frequency @f(¢) and the

B |

+ [S]zl(tw[ﬂzg(t),

alt)
i |
(22)

=
Py
o~
G

where we denotep(t) = f'(z,r)f(x,r) + 1
POy —H(1), H(t) = GO)f (z,7) f(m,7)+C(
BTPBA(t) (L(t) is positive definite)z1(t) = [p(t)Bg P +

p(t)By PA,,)&(t), andzy(t) = =07 (t) f(,r) —d(t). Since

x(t) is bounded, it follows thap(t) is bounded. That is, there

exists a positive constant; such thatl < p(¢) < «; for

all 0 < t < oo. On the other hand, it follows from the

definition of the projection operator thdG(0)| < 1 and

|G(d)|| < 1. ThereforeF(t) is bounded. Further, it follows

from the dynamics (3) that(¢) is bounded. Thereforg(¢)

feedback gairk determines the damping ratio. We notice that
selection of the initial parameter estimates inside thevern
sets defined by the projection operator resultddit) = 0

on some initial interval0 ¢]. Therefore,F'(t) = p(t)I, on

[0 t]. Let ap = 22552 where A% = max;> A(L(t)) and

Ao = ming>o A(L(t)). DenotingE(t) = aoly — p(t)L(t), we
can write

50 1= e i, 15 ] @@
o5 Jmo [3 Je00 ] S Jao,

the solution of which has an equivalent integral form

a(t) = p(t) [@(0) @(0)] +7 [l alt —7)[za(7) +

and z(t) are bounded. That is, there exist positive constants E(7)u(7)]dr + f(f [ (t — 7) + ko (t — 7)]z2(7)dT,(24)



where(t) = [11(t) 2(t)] is the first row of the transition ‘ __ Allron defscionin degrees
matrix of the LTI part of system (23). Following [8], we selec

k =2\/vaq, (25)
which results in the minimum normiys(t)||z, = (yao)™* . ni P
For the samek, we have ||¥1(t) + ka(t)|z, < 2] . A S S S B

4(yag)~1/2. Since ||E(t)||c.. = ao — \o, We obtain1l —
Y2 ()|l 2, IE®) ||l 2. = 2Xo0ag . Then, according to [8], it
follows from the expression (24) that

la@®] < bi(laO)] + Ju(0))e
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whereb; is a positive constant and
v = — \g_y ( a0 — /a0 _ )\0) ) (27) Fig. 3. M-MRAC control signal time history withy = 1000.

From the definition ofz;(¢) and Lemma 3.2 we have
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Then, it is straightforward to obtain the bound (21) with “oos} W m |
8 by ([|@(0)] + u(0)]) B T e R T
' 2 A0 Bank angle in degrees
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This concludes the proof. [ ] '
V. TRACKING ERROR | Reeee
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In this section we derive a norm bound for the tracking error
e(t) = z(t) — ., (t), which is given by the following lemma.

Lemma 5.1: Let the system (1) be controlled by the con- Fig. 4. MRAC angle tracking performance with= 1000.
troller (18), which is defined by the prediction model (5) and

the adaptive law (6). Then
andv = min[vy, vo). [ |

e < Bze™t + Bay ™2, (28)  Remark 5.1: The proposed method guarantees the regula-
0sj_on of all error signals by increasing the adaptation natech
'js only subject to available computational power. Therefor
with fast adaptation the control objective is achieved with
generating unwanted excursions and oscillations in adapti
e(t) = Ae(t) — BA(t)u(t) . (29) signals. The effects of the external disturbances and pateam
variations are compensated for by the fast adaptation, teand t
effects of the initial conditions decay exponentially. [
Remark 5.2: It can be observed that the dynamics of the
reference model, the operating system and the tracking erro
lle()| < bzle(0)|le="2t + by || BA(t)|| 2. fg e—va(t=7) . hhave t?e same timde Isgal_lgsl_det_ermined by the mAtrHen;;é_
v 1 — the reference model initialization error generates antagdi
[Bre™7 + Bay~2dr < blle(0)]|e™* +b2HB[}(t)”L°° exponential termb, [e(0)||e=* in the bound of the tracking
,ﬁ—lw(e’”2t —e ) + f—j(l — e”’ﬁ)v’f} (30) error with a rate of decay defined by the time constant of
the reference model, since the adaptation process is much
faster. The time scale of the prediction error dynamics (8)
is determined by, which is proportional tq /7, and the time

(B3 and 3, are positive constants to be specified in the pro
Proof: It is straightforward to obtain the tracking erro
dynamics in the form

Since A is Hurwitz, it follows that there exist positive con-
stantsb, and v, such that|e??|| < boe~*2t. Therefore the
following bound can be obtained

which can be expressed in the form of (28) with
ba31

Bz = balle(0)] + g — 11| IBA®)]c- scale of the adaptive estimates is determined byherefore,
1 for large values ofy the time scale of the adaptive estimation
Ps = V—1b262||BA(t)ng. process is separated from the time scale of the underlying



closed-loop dynamics, which is not achievable by conveatio ‘ | Yawrste n degresicecond

adaptive methods [1]. O
o I )
I
VI. ILLUSTRATIVE EXAMPLE 0 JIRN I \HHHWMHMM
P ”“‘ i JJ\"\‘\H:IHJ i
In this section, the advantages of the proposed indirect ‘ : i ’77%‘“ )
M-MRAC architecture are demonstrated in simulations for a ! . i L - . - “rtaece |
dynamic model that represents the lateral-directionalionot
of a generic transport aircraft (GTM) [6]. The nominal model % ‘ ‘ fotate degreesises. ‘ ‘
is the linearized lateral-directional dynamics of GTM ag th 200 ]
altitude of30,000 ft and speed 00.8M and is given by 1o (\ (\‘ ]
i(t) = Apx(t) + Baul(t), (31) €V \/ ==
wherexz = [3 r p ¢|" is the lateral-directional state vector, 20 s T T I

in which g is the sideslip angley; is the yaw ratep is the
roll rate, ¢ is the bank angle, and = [§, d,]" is the control

signal that includes the aileron deflectiép and the rudder Fig. 5. MRAC rate tracking performance with= 1000.
deflectiond,, and the numerical values fot,, and B,, are
—0.1578 —0.9907 0.0475  0.0404 o
A — 2.7698 —0.3842 0.0240 0 20
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The reference model is selected from the perspective of ,“r"”‘ \'”W
improving the performance characteristics of the nomiryal d WH Il

namics and is given by the equation (2), whdre- A,,— B, K ) ‘ ‘ ‘ ‘ ‘ Reference

I
0 5 10 15 20 25 30 35 40

and B = B, N, with the feedback and feedforward matrices Time
0 0 0.43 0.55 ] N = { 1.26 0.65 } .

K

1192 —15 0 0 3.33 —0.07 Fig. 6. MRAC control signal time history with = 1000.

The reference model is driven by a command, which is

chosen to be a series of coordinated turn maneuvers. Thathe external disturbance is chosen to be a sinusoid of am-

is, sideslip angle command is set to zero and the bank anglgude0.1 and frequencyr /3 rad/sec in the yaw channel and

command is chosen to be a square wave of the amplitudezo§quare wave of amplitude15 and frequencyr/3 rad/sec

15 degrees and of the frequem%? rad/sec, which is filtered in the roll channel. The disturbance magnitude corresptmds

through a first order stable filter ;. 8.6 degrees of aileron deflection arid7 degrees of rudder

The uncertain model of GTM roughly correspond28%  deflection. In the definition of the projection operator the

loss of left wing tip att = 0 sec, and55% loss of rudder conservative bounds* = 9* = d* = 10 are used.

surface and vertical tail at = 20 sec. Its dynamics are in  First, a simulation is run withy = 1000, Q = I, and k

the form of the equation (3) with piecewise const@rt) and s computed according to (25), where we used conservative

A(t), and f(z) = x. The corresponding numerical values argounds\, = 0.2 and \° = 2. Figures 1 and 2 display
o ooy oaio 0], e kg peramance of e ses Clary g i
0.0807 —0.0109 00168 0 | '= gains, for which the

o) = control time history is presented in Figure 3. It can be oleser
02268 0.0209 —0.1053 0 L= 90 that the_adaptive control signal_ clos.ely follows the renfmm
_0.8514 0.0692 0.0003 0 |’ > signal given by (17). Small spikes in the control signal are

attributed to the discontinuities of the disturbance. Hue t
{ 0.5401 0.0167 } £ <920 comparison purposes we also present the conventional MRAC
—0.0632 1.0524 |’ - performance with the same setup. It can be observed from the
At) = Figure 4 that MRAC achieves output tracking with small os-
{ 0.5413 —0.0492 } ‘s 20 cillations in sideslip angle. However, the rates and thetrobn
0.0408 0.4225 |’ surface deflection commands are experiencing unacceptable
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Fig. 7. M-MRAC output tracking withy = 10000.
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Fig. 8. M-MRAC input tracking withry = 10000.

oscillations (see Figures 5 and 6).

Next we increase the adaptation ratefold. As it can be [y
viewed form Figures 7 and 8, the output and input tracking
performances are substantially improved as predicted.-Co
putations show that the tracking error is decreased more t
V10 fold, implying the the derived bounds are conservative.
Farther increase of adaptation rate Yo= 100000 further [3]
improves the system’s input and output performance (59?
Figures 9 and 10), which verifies the theoretical derivation

(5]
VII. CONCLUSIONS

We have presented indirect modified reference modej
MRAC (M-MRAC) approach to uncertain systems with time
varying parameters and bounded external disturbancesutith
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Fig. 9. M-MRAC output tracking withy = 100000.
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Fig. 10. M-MRAC input trackingy = 100000.
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