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Research Challenges for NextGen 
The two big questions 

What is the 
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Air Traffic Operations 
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Traffic Flow Management 

Investigate modeling, simulation and optimization techniques to manage air 
traffic flows subject to airspace and airport capacity constraints while 
accommodating user preferences with increased traffic demand in the 
presence of uncertainty 
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Airspace 
Weather 
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TFM Planning 

Metrics 
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Current Research Goals  
•  Develop optimal aircraft trajectories 

–  Aircraft Dynamic Models (Point Mass, 3-DOF) 
–  Winds, Uncertainties 
–  Minimize  

•  Fuel burn 
•  Climate impact of emissions 

–  Global Warming Potential (GWP), Global Temperature Potential (GTP)  
•  Persistent contrails  

–  Global models for contrail formation using weather forecast 
–  Methods based on calculus of variations 
–  Accuracy versus computation time 

•  Model convective weather and other weather hazards and 
translate their impact on airspace capacity 

•  Integrate climate models and metrics with US national 
airspace simulation  
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Cross-Polar Operation 
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Current Cross-Polar Flights 
•  Provide shorter paths between many North American and Asian 

cities 

•  Have not fully utilized the potential benefits of flying wind-optimal 
routes due to limited track flexibility 

•  Do not consider climate impact 
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•  Find the optimal trajectory given the arrival and departure 
airports, cruise speed and winds subject to environmental 
constraints 

•  The aircraft equations of motion at a constant altitude above 
the spherical Earth’s surface are  

Environmentally Responsible Trajectory 

€ 

˙ φ =
V cosψ + u(φ,θ,h)

Rcosθ
˙ θ =

V sinψ + v(φ,θ,h)
R

    subject to

Th = D
L = W
˙ m = − f
R >> h
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Optimization Subject to Environmental Constraints 

• Optimize horizontal trajectory by determining the heading angle 
that minimizes the cost function 

• Solution reduces to solving 

€ 

J(h) = [Ct +K(φ,θ,h)
t0

t f∫ ]dt

K(φ,θ,h) = Ci ⋅GWPi(φ,θ,h)
i
∑ ⋅EIi ⋅ f (h) +Crr(φ,θ,h)

€ 

˙ φ =
V cosψ + u(φ,θ,h)

Rcosθ
˙ θ =

V sinψ + v(φ,θ,h)
R

˙ ψ =
−[Fwind (ψ ,φ,θ,u,v) +Fclimate(ψ ,φ,θ,u,v,K(φ,θ,h))]

Rcosθ(Ct +K(φ,θ,h))
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Time cost 

Emissions cost 

Contrails penalty cost 



•  Compute and predict contrails using Global Forecasting System 
(GFS) 

Atmospheric Model 

12 Contrail Favorable Regions at 8 p.m. EDT on Dec. 31, 2009 

Latitude 

Longitude 
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 Fuel and Emission Models  

Aviation Environmental Design Tool (AEDT) 
Eurocontrol’s Base of Aircraft Data (BADA) 
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Variation of Emissions with Altitude  

€ 

e(HC) = EIHC ×σ
e(CO) = EICO×σ
e(NOx ) = EINOx ×σ

•  Fuel and emission models undergoing additional verification using AEDT 
(Collaboration with Volpe National Transportation Systems Center) 

€ 

e(CO2) = 3155 ×σ
e(H2O) =1237 ×σ
e(SO2) = 0.8 ×σ



Cross-Polar Trajectories-Chicago to Hong Kong 
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Altitude at 32,000 ft 

Contrails penalty area 

Contrails Avoidance, (CA) 

Great Circle, (GC) 

Wind Optimal, (WO) 

Flight Plan, (FP) 



Trajectories for 15 Origin-Destination Pairs 

•  For 15 Origin-Destination pairs during the days with medium 
and high contrail formation in 2010 
–  Analyze the fuel burn and climate impact 
–  Investigate the tradeoff between persistent contrails formation 

and additional fuel burn, with and without altitude optimization 
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Chicago O’Hare  Beijing Capital, Hong Kong, Shanghai Pudong , 
Seoul Incheon    

Hartsfield-Jackson Atlanta  Seoul Incheon  

John F. Kennedy  Beijing Capital , Hong Kong, Seoul Incheon ,   

Los Angeles Dubai  

Newark Liberty  Hong Kong, Shanghai Pudong , Singapore Changi  

Washington Dulles  Beijing Capital, Narita, Seoul Incheon    



Potential Contrails Formation in 2010 
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Average: 203 minutes 

Minutes 

Medium: August 7 

High: December 4 



Fuel Burn and GWP for Cross-Polar Trajectories  
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Fuel 
Burn 
(ton) 

GWP 
(1000) 

Fuel 
Savings 

(%) 
8/7/10 FP 91.7 442 0.0 

GC 89.1 430 2.8 
WO 84.4 407 8.0 

12/4/10 FP 91.4 441 0.0 
GC 89.3 431 2.3 
WO 87.4 422 4.4 

•  Climate impact of cross-polar trajectories equivalent to about 400 
tons of CO2 emissions 

•  WO trajectories reduce average fuel burn (GWP) by 8.0% and 
4.4% 

•  Conducting similar fuel savings analysis for Pacific Project Paper 
Trial and Data Analysis (Routes through Anchorage Center) 



Cross-Polar Trajectories Generation 

•  For each day (High: December 4, Medium: August 7) 
  For each Origin-Destination pair (15 pairs) 
         For each possible flight level (6 levels between 300 – 400) 

     Compute 1 flight plan trajectory       
      Compute 1 great circle trajectory 
      Compute 1 wind optimal trajectory 
      Compute 20 contrails avoidance trajectories 

  Compute fuel burn, emissions, GWP, persistent contrails    
formation time for each of the 23 trajectories 
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Trade-off between extra GWP and Contrails  

20 

Additional Fuel Consumption, % 

Contrails 
(minutes) 

Additional GWP, % 



Aggregate Global Temperature Potential (AGTP) 
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Aggregate Global Temperature Potential (AGTP) 
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Aggregate Global Temperature Potential (AGTP) 
Influence of emission and contrail parameters 
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Concluding Remarks 
•  Developed an algorithm to calculate route optimization trajectories 

for aircraft while avoiding the regions of airspace that facilitate 
persistent contrails formation, convective weather or other hazards 

•  Presented trajectory optimization results for 15 origin-destination 
pairs between major international airports in the United States and 
Asia during the days with medium and high contrail formation in 
2010 

•  Integrated contrails, emission models and optimized routing 
strategies to a national level airspace simulation with capability to 
visualize, evaluate technology and alternate operational concepts 
and provide inputs for policy-analysis tools to reduce the impact of 
aviation on the environment 
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