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Abstract  

This paper develops a method for the 

quantitative analysis of network connectivity in the 

presence of both permanent and transient faults. Even 

though transient noise is considered a common 

occurrence in networks, a survey of the literature 

reveals an emphasis on permanent faults.  Transient 

faults introduce a time element into the analysis of 

network reliability. With permanent faults it is 

sufficient to consider the faults that have accumulated 

by the end of the operating period. With transient 

faults the arrival and recovery time must be included. 

The number and location of faults in the system is a 

dynamic variable. Transient faults also introduce 

system recovery into the analysis. 

Introduction 

The goal is the quantitative assessment of 

network connectivity in the presence of both 

permanent and transient faults.  The approach is to 

construct a global model that includes all classes of 

faults: permanent, transient, independent, and 

correlated.  A theorem is derived about this model 

that give distributions for (1) the number of fault 

occurrences, (2) the type of fault occurrence, (3) the 

time of the fault occurrences, and (4) the location of 

the fault occurrence.  These results are applied to 

compare and contrast the connectivity of different 

network architectures in the presence of permanent, 

transient, independent, and correlated faults.  The 

examples below use a Monte Carlo simulation, but 

the theorem mentioned above could be used to guide 

fault-injections in a laboratory.        

    Network performance in the presence of 

transients has been extensively studied.  In [I], the 

authors stress the importance of considering both 

permanent and transient faults in a dependability 

analysis of a network. They conduct a failure-modes-

and-effects analysis using 2080 transient fault 

injections in the host interface of a selected network. 

In [2], the authors propose a design to provide a 

transparent self-healing network that handles both 

permanent and transient faults. The goal is a system 

that continues to meet hard deadlines in the presence 

of fault occurrence. In [3], the authors describe an 

embedded system for real time control that uses error 

detection and cyclic operation to guard against 

permanent and transient faults. The goal is a system 

with a very high safety level.  In [4], the authors 

present a comparative analysis of transient fault-

tolerant techniques including end-to-end, node-by-

node, and stochastic communication, but there is no 

quantitative assessment of reliability.   In [5], the 

author studies masking the effects of transient faults.  

In [6], the authors study fault-tolerant cache 

coherence protocols that ensure the correct execution 

of programs when not all messages are correctly 

delivered. 

    The major difference between this paper and 

the papers referenced above is that this paper 

develops a method of quantitative assessment, but the 

results of this paper integrate well with the previous 

advances in the field.  The results of a failure-modes-

and-effects analysis (as in [l]) would be used as a 

model for system recovery that is a part of the 

quantitative assessment.  This assessment method 

would be used to check the effectiveness of various 

proposed designs (as in [2] and [3]).  The theorems 

below offer the possibility of putting this type of 

work (as in [4] and [5]) on a quantitative basis.  More 

efficient methods (as in [6]) could be used to 

efficiently apply the methods below to larger 

networks. 

    The next section introduces a global fault 

model and proves the basic theorem about fault 

occurrence.  The following section demonstrates fault 

occurrence can be considered in terms of three, 

independent, well-known distributions.  The 

following section considers two complex networks 

and computes their connectivity under several fault 

conditions.  
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Figure 1. Global Fault Occurrence Model

 

The Global Fault Model 

Faults are either permanent or transient.  They 

are either independent or correlated in space or time 

or both.  Suppose a certain system operating in a 

certain environment has  m  types of fault events, and 

event type  j  occurs at rate  α j .  Let  α  = α 1 + … + α m . 

The global model for precisely n faults occurring 

during an operating period is given in figure 1, which 

displays all possible sequences of  n  fault events  

The global model for precisely n faults occurring 

during an operating period is given in figure 1, which 

displays all possible sequences of  n  fault events 

The fan out from state  S0  includes all m classes 

of faults. The fan out from all the intermediate states 

is the same as the fan out from state S0 .  There are 

n+2 columns beginning with column 0 and ending 

with column  n+l.  The first and last columns have a 

single row. The number of faults that have occurred 

corresponds to the column number. The process 

begins in state S0 and ends in one of the states in the 

nth column.  The final state Sn+1  is included because 

the specification that precisely n faults have occurred 

(during the operating period) is expressed 

mathematically by requiring that the process reaches 

the nth column during the operating period, but the 

transition into Sn+1  does not occur until after the 

operating period. 

 

 

 

    Obviously, if figure 1 is the fault occurrence 

model, then a device can collect several faults during 

an operating period.  This phenomenon must be 

suitably interpreted during a simulation or laboratory 

fault-injection.  If a component has already collected 

a permanent fault, then subsequent fault occurrences 

can be ignored. If a component has had previous 

transient fault occurrences, then a permanent fault 

renders it permanently faulty. Multiple transient fault 

occurrences are isolated if the component recovers 

from the previous transient before the next occurs.  In 

a simulation or fault-injection experiment, an isolated 

transient is treated as if the others had not occurred.  

If transient faults occur while others are in the 

system, the simulation or experiment will have to 

observe system recovery from all the transient faults 

present. 

    The derivation of the formula for fault 

occurrence requires some bookkeeping.  Suppose  k i  

faults of type  i   (i = 1,..., m)  with   n = k 1 + ... + k m 

have occurred in some specified order, and let   j  be 

the rate of the  j
th
   fault (j=1,..., n).  We have, 
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and   =  1 + ... +  m .  The probability that the  n  

designated faults occur in the designated order and 

that the  j
th
  fault occurs before time  s j  is given by 

the convolution integrals below. 
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This last expression is the occurrence probability 

for precisely  n  faults of  a specified type and 

location in a specified order at specified times. 

    Expression (2) does not depend on the 

specified order of the faults.  Since any ordering 

yields the same probability, all orderings are equally 

likely.  Hence, the occurrence probability for 

precisely  n  faults of specified type and location at 

specified times in any order whatsoever is  

     

)3(dtdtdt

e

!k!k!k

!n

12n

s

t

s

t

s

0

T-k

m

k

2

k

1

m21

n

1-n

2

1

1

m21









  

 

Interpretation of the Fault Occurrence 

Formula 

This section shows how to choose the number, 

occurrence time, type, and location of the faults for a 

trial (representing one operating period) in the 

experiment based on the result in the previous 

section.  The first subsection presents a standard 

result, and the next three sections present the three 

distributions used to interpret the result in the 

previous section. 

Competing Constant Rate Events 

Suppose there are  m  events each with rate   i  

as depicted in figure 2.  These events represent all 

possible fault occurrences. 
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Figure 2. The Fan-Out for Fault Occurrence 

For the model in figure 2, the probability that 

event  i  has occurred given some event has occurred 

is [7] 
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The Poisson distribution 

The Poisson distribution is a renewal process 

that occurs at a constant rate.  The model with rate    

is given in figure 3. 
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 Figure 3. The Poisson Renewal Process 

For the model in figure 3, the probability of 

being in state  k  at time  T  is [7] 
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As mentioned in the section above, the fault 

injection procedure will have to be adapted to the 

assumption of a constant rate used by the Poisson 

process. If the system removes failed components, 

the failure rate of the system does not remain 

constant.  One method of handling this is to treat the 

removed components as virtual components.  This 

means that the component is theoretically subject to 

later fault injections, but in practice these faults will 

not be injected if the system has already removed the 

component.  If the system has not yet removed the 

faulty component, then the second fault can be 

injected into the same component.  This double 

injection checks that the occurrence of a second fault 

does not interfere with the detection and removal of a 

faulty component 

The Ordered Uniform Distribution 

Choose a sample of size  n  ( x 1 , x 2 , ... , x n ) 

from the uniform distribution on the interval [0 T].  

Order it as  n)2)1) xxx (((   .  The 

distribution 
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is called the ordered uniform distribution [7]. 

 

The Mutinomial Distribution 

Suppose we sample with replacement from a 

population with  m  classes of objects.  Suppose the 

probability of choosing an object from class  i  is  pi .  

For a sample of size  n  the probability of choosing  ki  

objects from class  i  (i=1,...,n)  is [7]. 
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In particular, if the class of objects is the set of 

faults given in figure 1 then the probability of  k j  

faults of type  j  occurring given  n  faults have 

occurred is given by the expression  
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where  m1   .  In the formulas (8) and (9) 

some of the  k  j’s  can be zero.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 4. A Four-by-Four-by-Four Planar Array  

 

The Fault Injection Procedure 

The expression (3) is the probability that 

precisely  n  faults of some specified types have 

occurred at some specified times in an operating 

period of the system.  The expression (3) (and hence 

the probability) is algebraically equivalent to a 

product of three probability distributions as given in 

expression (9).  The multiplicative property implies 

these three distributions act independently. 
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The three distributions (in order) are the Poisson 

renewal process, the ordered uniform, and the 

multinomial distribution.  Since they act 

independently, the faults for any trial (representing 

one operating period) can be chosen in the following 

three steps. 

 

(1) The number of faults is given by the Poisson 

with rate the sum of all fault occurrence 

rates. 

(2) The occurrence times are given by the 

ordered uniform.  

(3) At each occurrence time, the location and 

type of fault is chosen by a random sample 

(without replacement, according to 

occurrence probability) from the set of faults. 

 

Connectivity Example 

We consider a two-dimensional and a three-

dimensional planar array.  The examples have the 

same number of nodes, an eight-by-eight and a four-

by-four-by-four, although they have a different 

number of links: 128 and 192, respectively.  A four-

by-four-by-four planar array is depicted in figure 4.  

The connectivity for a two-dimensional four-by-four 

is given by the first 16 nodes and the links connecting 

them.   



 

Independent node and link failures can be either 

permanent or transient.  For this example, faults 

correlated in space are all transient faults, and they 

are node-centric with a correlated fault bringing 

down a node, a group of adjacent nodes, and the 

connecting links.  There are two levels of severity for 

faults correlated in space.  For a two-dimensional 

array, a fault of severity level one brings down a node 

and the four adjacent nodes along with the associated 

14 links.  A fault of severity level  two brings down a 

node and the eight adjacent nodes along with the 

associated 24 links.  These faults are shown in figures 

5 and 6.  Level one and two faults in a three-

dimensional array bring down 7 and 27 nodes 

respectively along with the associated links. 

 

 

 

             

  

 

 

 

Figure 5. Correlated Fault of Severity One  

 

 

    

 

  

 

 

 

 

 

Figure 6. Correlated Fault of Severity Two  

 

We also consider faults correlated in time, and 

for this study, they are treated as arising from 

external phenomena that also cause correlation in 

space.  For these computations, we assume they are 

transient faults of severity level one that repeatedly 

hit the same collection of nodes.  The number of 

repeated hits is given by a Poisson distribution, and 

their occurrence times are given by an exponential 

distribution. 

    We give the systems a long operating time of 

more than 10 years.  The nodes are assumed simple 

(perhaps computers on a chip) and highly reliable.  

The node transient failure rate is a magnitude larger 

than the node permanent failure rate.  The links are 

simpler pieces of hardware, but they are more 

exposed.  Their permanent failure rate is equal to the 

node permanent failure rate, and their transient 

failure rate is an order of magnitude greater than their 

permanent rate.  The correlated-in-space rates are 

proportional to the number of links in the system.  

The correlated-in-time faults average two additional 

hits, and the additional hits occur quickly.  In this 

first study, the transient recovery times for all types 

of transient faults are equal.  

    The operating time and failure rates for the 

computations are 

Operating time  = 100,000 hours 

Node permanent = 1e-6/hour 

        Node transient = 1e-5/hour 

Link permanent = 1e-6/hour 

Link transient  = 1e-5/hour 

Correlated level one for two dimensional 

      = 1.28e-4/hour 

Correlated level two for two dimensional 

      = 6.4e-5/hour 

Correlated level one for three dimensional 

      = 1.92e-4/hour 

Correlated level two for three dimensional 

      = 9.6e-5/hour 

Occurrence rate for two-dimensional 

       time dependent faults = 6.4e-5/hour  

Occurrence rate for three-dimensional 



      time dependent faults = 9.6e-5/hour  

 

Possion parameter for time dependent  

     faults = 2 

Exponential rate for time dependent  

     faults = 3.6e+4/hour 

Recovery time for transients = 1 second. 

 

Table 1 gives the failure frequencies and 95% 

confidence intervals for two and three dimensional 

planar arrays when the number of trials is 10,000 for 

each fault scenario. 

Summary and Further work 

This paper derives a result about fault 

occurrence in a global fault model where the faults 

appear at a constant rate.  A fault can be permanent 

or transient.  It can be independent or correlated in 

space or time or both.  Additional analysis shows this 

basic result on fault occurrence can be written as the 

product of three, well-known distributions, which 

renders it convenient for fault injection experiments.  

The examples demonstrate applying the result to all 

possible classes of faults: permanent or transient and 

independent or correlated in space or time or both.     

    In addition to connectivity, there are a number 

of other elements that can now be examined 

quantitatively.  There is the study of the detection and 

identification of faults with rerouting of messages.  

There is the comparison of architectures and 

protocols in different operating environments, and 

there is sensitivity analysis to guide the design of 

systems and the gathering of field data 

 

 

 

 

 

 

 

 

 

Table 1. Statistics of Fault Injection  

 

Fault Types 

Present 

Eight-by-

Eight 

Four 

-by- 

Four 

-by- 

Four 

Node perm  52 

 [38, 66] 

 0 

[0, 3] 

Node tran   0 

 [0, 3] 

 0 

 [0, 3] 

Node perm 

Node tran 

431 

 [391, 471] 

 4 

[0, 8] 

Link perm  42 

 [29, 55] 

 1 

 [0, 3] 

Link tran  0 

 [0, 3] 

  0 

 [0,3] 

Link perm 

Link tran 

 470 

 [429, 511] 

2 

 [0, 5] 

Node per 

Node tran 

Link perm 

Link tran 

 3674 

[3579, 

3768] 

 177 

[151, 203] 

Node perm 

Node tran 

Link perm 

Link tran 

Correlated type 1 

5881 

 [5784, 

5978] 

382 

 [344, 420] 

Node perm 

Node tran 

Link perm 

Link tran 

Correlated type 1 

Correlated type 2 

 5905  

[5808, 

6001] 

470 

[428, 511] 

Node perm 

Node tran 

Link perm 

Link tran 

Correlated type 1 

Correlated type 2 

Time correlated 

 6534 

[6441, 

6627] 

 641 

[593, 689] 
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