Digital TMI
Creation, Storage, Retrieval, and Transmission of TMI Data

Joseph Rios
ATCSCC Visitors
June 27, 2012
• Traffic demo
Project Overview

• The goal of Digital TMI is to offer specific and reasonable suggestions for improvements to the creation, storage, retrieval, and transmission of Traffic Management Initiative data, which may facilitate day-of-operations decisions and historical analysis.

• The TMI Cube will offer a unified view of TMI data for all stakeholders. This will include historical, current, and near-future TMI data. The TMI Cube will be accessed through the FAA’s NAS Common Reference.

• Started August 2011, currently funded through August 2013 by Rich Jehlen’s group.
Traffic Management Data

- The National Traffic Management Log (NTML) and Traffic Flow Management Data to Industry (TFMDI) are two primary sources.

- Currently, Traffic Management Initiative (TMI) data is generated, stored, and retrieved (mostly) to aid day-of-operations.

- TMI data serve their intended purposes well.

- Future sources? FPS?
Downside

- The major drawback to the current state of data in the NAS is the difficulty of historical analysis.

- Examples
 - Non-trivial to extract meaningful relationships between the data within the NTML.
 - Archive of TFMDI data not readily available and is stored only as a set of individual XML files.

- Secondary drawback is the data living in (and accessed from) different systems.
Fundamental, ‘Hard’ TMI Questions

• What are all the current TMIs affecting flights from ZOA to ZNY? To ATL?

• Given a choice between 3 routes, which one is least likely (based on history) to receive multiple TMIs?

• On May 3rd, 2011, how did the day’s TMI plan evolve? How many changes to the plan were required?
Approach

- Create a unified data source for TMIs that is suitable for analysis and for ‘day-of’ operations

- Leverage existing/developing models and architectures
 - AIXM, GML, etc.
 - SWIM
Development Plan and Progress

- Gather domain knowledge, create requirements
- Develop necessary schema
- Implement database
- Implement interface to outside world
- Test, refine
- Deliver documentation for potential FAA implementation

In progress: 70%
Complete: 30%
Traffic Management information eXchange Model: TMX
Reroute Advisory from NTML

- Reroutes only occur in the ‘Advisories’ table of NTML.
- Few columns:
 - Times
 - Cause
 - Text blob (example)
- Difficult to parse, error-prone
Traffic Flow Management Data to Industry

- TFMDI is available similarly to ASDI
- XML-formatted reroute, FCA, and FEA data
- “Publish-Subscribe” system
 - New reroute is issued
 - Encoded in TFMDI XML format and saved
 - “Announced” to all clients that it is downloadable

- Example…
Translating TFMDI to TMXM

- Since both formats are well-structured, translation is not difficult
- Example…
MIT Data

- MIT sourced from NTML

- Important columns from RSTN database table:
 - Frfac
 - Tofac
 - Rstn Type (MIT, ALT, STOP, SPD, etc.)
 - Start/Stop Times
 - Rstntype (Departures, Arrivals, Enroute)
 - Airports (Arrival, Departure)
 - NAS Element (Usually a fix/waypoint?)
 - Various parameters (MIT value, ALT type, Spd, etc.)

- Not yet implemented in Digital TMI system
MIT Example

<table>
<thead>
<tr>
<th>Frfac</th>
<th>ZBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tofac</td>
<td>N90</td>
</tr>
<tr>
<td>Entryid</td>
<td>132493495</td>
</tr>
<tr>
<td>Rstnid</td>
<td>2920474</td>
</tr>
<tr>
<td>Rstnsource</td>
<td>DYN</td>
</tr>
<tr>
<td>Passback</td>
<td>N</td>
</tr>
<tr>
<td>Appevtime</td>
<td></td>
</tr>
<tr>
<td>Acft Type</td>
<td>JETS</td>
</tr>
<tr>
<td>Provider List</td>
<td>N90</td>
</tr>
<tr>
<td>Rstn Start</td>
<td></td>
</tr>
<tr>
<td>Rstn Stop</td>
<td></td>
</tr>
<tr>
<td>Stopflag</td>
<td>1</td>
</tr>
<tr>
<td>Rstntype Text</td>
<td>Departures</td>
</tr>
<tr>
<td>Airport</td>
<td>N90/ZNY</td>
</tr>
<tr>
<td>Dep Airport</td>
<td>N90/ZNY</td>
</tr>
<tr>
<td>Arr Airport</td>
<td>0</td>
</tr>
<tr>
<td>Nas Element</td>
<td>MERIT</td>
</tr>
<tr>
<td>Impact Element</td>
<td></td>
</tr>
<tr>
<td>ReasonTxt</td>
<td>VOL:Volume</td>
</tr>
<tr>
<td>Mitnum</td>
<td>278529</td>
</tr>
<tr>
<td>Mitval</td>
<td>15</td>
</tr>
<tr>
<td>Alt Type</td>
<td>0</td>
</tr>
<tr>
<td>Alt</td>
<td>-</td>
</tr>
<tr>
<td>Spd Type</td>
<td>0</td>
</tr>
<tr>
<td>Spd</td>
<td>-</td>
</tr>
<tr>
<td>Qualifier</td>
<td>AS ONE</td>
</tr>
<tr>
<td>Oldendtime</td>
<td>0</td>
</tr>
<tr>
<td>Modid</td>
<td>0</td>
</tr>
<tr>
<td>Remarks</td>
<td>0</td>
</tr>
<tr>
<td>SwxRerte</td>
<td>N</td>
</tr>
</tbody>
</table>

Is Flight ZZ100 affected by any MITs?

Check: ZZ100 flight path goes through MERIT during this MIT?

Check: ZZ100 is a jet?

Check: ZZ100 departs from N90/ZNY?

ZZ100 is affected by this MIT

Ultimately, this will become a single DB query.
Playbook Reroute Data
Data Needs

- Historical TFMDI data
 - We collect all TFMDI data now
 - Only have a number of months in archive

- “Digitized” Playbook Reroute data
 - Only access to playbooks is via website
 - ATCSCC has ‘machine readable’ playbook data

- Scheduled NTML query
 - At least a daily query, but perhaps an hourly?
 - System is in place to do this already, need permissions

- TMA samples
 - Members of FCT noted importance of TMA data
 - Even though TMA data is not centralized, we’d like to examine it