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Efficient Airspace Operations Under All Conditions 

•  Airspace operations is a trade-off balancing safety, 
capacity, efficiency and environmental considerations 

•  Ideal flight: Unimpeded wind optimal route with optimal 
climb and descent 

•  Operations degraded due to reduction in airport and 
airspace capacity caused by inefficient procedures and 
disturbances 
–  Runway and airport constraints (fog, visibility, winds, noise) 
–  Terminal area constraints (procedures, wake vortex, noise) 
–  En Route Airspace Constraints 

•  Congestion 
•  Turbulence and Convective weather 
•  Contrails 
•  Volcanic Ash 
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En Route Airspace Constraints 
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Congestion Convective weather 

Volcanic ash Contrails 

• Frequency and the cause of the constraint/disturbance varies 



NextGen Weather-ATM Integration Concepts 
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Research Goal 

•  Characterize and predict disturbance using a 
combination of models, satellite observations and 
aircraft based sensors  
–  Adapt from atmospheric sciences and weather research 

•  Develop methodology to design fuel efficient 
trajectories in the presence of disturbances 

•  Integrate environmental factors and new fuel and 
vehicle technologies in airspace simulations to evaluate 
alternate concepts and policies for sustainable aviation 
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Outline 

•  Modeling approach 
•  Models 

–  Emissions  
–  Contrails formation 
–  Volcanic ash 

•  Efficient aircraft trajectories  
•  Integrated example 
•  Concluding remarks 
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 Fuel and Emission Models  
 

Aviation Environmental Design Tool (AEDT) 
Eurocontrol’s Base of Aircraft Data (BADA) 
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Variation of Emissions with Altitude  
 

€ 

e(HC) = EIHC ×σ
e(CO) = EICO×σ
e(NOx ) = EINOx ×σ

•  Fuel and emission models undergoing additional verification using AEDT 
(Collaboration with Volpe National Transportation Systems Center) 
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CO2 Emissions (Boeing 737-300) 
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Contrails  
•  Aircraft condensation trails occur when 

warm engine exhaust gases and cold 
ambient air interact 

–  Contrails form when Relative Humidity 
with respect to Water (RHW) > 
Temperature dependent threshold 

–  Persist when Relative Humidity with 
respect to Ice (RHI) >100% 

•  Contribution of contrails to global 
warming may be larger than contribution 
from CO2 emissions 
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http://www.nature.com/nclimate/journal/v1/n1/full/nclimate1078.html  



Persistent Contrail Formation Model 
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Volcanic Activity* 

•  Air traffic during April-May, 2010 Iceland 
(Eyjafjallajokull) volcanic eruption 

•  Major volcanic eruptions in US 
•  Mount St. Helens (1980, Portland, OR airport) 
•  Mount Redoubt (1989-90, Anchorage, AK 

airport; 2009, Anchorage and Fairbanks, AK 
airports)  

•  Hybrid Single Particle Lagrangian 
Integrated Trajectory Model (HYSPLIT) 
-  Developed by NOAA Air Resources Laboratory for 

predictions of volcanic plume locations 
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Active, No Eruption 
Eruption 

Inactive 

US volcanic activity 1980-2008 

* Angela K. Diefenbach, Marianne Guffanti, and John W. Ewert , “Chronology and References of Volcanic Eruptions 
 and Selected Unrest in the United States, 1980- 2008, USGS Report 2009-1118, 2009  

•  Accuracy of dispersion models depends on eruption height and 
strength 

•  Integration of plume locations with FACET and evaluate 
concepts for plume refinement using observations 
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•  Find the optimal trajectory given the arrival and departure airports, 
cruise speed and winds subject to environmental constraints 

•  Aircraft equations of motion in the horizontal plane are 

  

  

Optimal Trajectory on Horizontal Plane 

€ 

˙ x = V cosθ + u(x, y)
˙ y = V sinθ + v(x, y)     subject to
Th = D
L = W
˙ m = − f
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Optimization Subject to  
Environmental Constraints 

•  Optimize horizontal trajectory by determining the heading 
angle that minimizes the cost function 

 
 

•  Solution reduces to solving 

€ 

˙ x = V cosθ + u(x, y)
˙ y = V sinθ + v(x, y)

˙ θ =
(V + u(x, y) cosθ + v(x, y) sinθ )

(Ct + C f f + Crr(x, y))
(−Cr sinθ ∂r(x, y)

∂x
+ Cr cosθ ∂r(x, y)

∂y
)

     + sin2θ (∂v(x, y)
∂x

) + sinθ cosθ (∂u(x, y)
∂x

−
∂v(x, y)
∂y

) − cos2θ (∂u(x, y)
∂y

)
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J = 1/2XT (t f )MX (t f ) + [Ct
t0

t f

∫ +C f f +Cr ⋅ r(x, y)]dt
Time cost 

Fuel cost 

Contrails penalty cost 



Contrail Reducing Optimal Aircraft 
Trajectories 

Wind Optimal 

Complete Contrail 
Reduction 

Partial Contrail 
Reduction 
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Optimal trajectories between 12 City-pairs 
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Wind optimal trajectories   

Persistent contrails formation 
 areas at 33,000 ft   



Optimal Trajectories for 12 City Pairs 

•  Investigate the tradeoff between persistent contrails formation and 
additional fuel burn, with and without altitude optimization, for 12 
city-pairs in the continental United States for a period of 24 hours 
starting from 6 a.m. EDT on May 24, 2007  

•  For each hour (24 hours in total) 
  For each city pair and direction (12 pairs, 2 directions) 

 For each possible flight level (6 levels between 290 – 400) 
Compute 1 wind-optimal trajectory 
Compute 20 wind-optimal contrails-avoidance trajectories 
Compute fuel burn for each of the 21 trajectories 
Compute persistent contrails formation time for each of the 

21 trajectories   
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Results for 12 City-pairs 
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Daily variations in the trade-off of emissions 
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Climate Impact of Emissions: Linear Climate Models 
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Results for 12 City-pairs 

•  2-3% additional fuel usage reduces surface temperature 
change to its lowest value 
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Parameter Variation of AGTP 
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Concluding Remarks 

•  Developing a common methodology to model and 
avoid disturbances affecting airspace 

•  Integrated contrails and emission models to a 
national level airspace simulation 

•  Developed capability to visualize, evaluate 
technology and alternate operational concepts 
and provide inputs for policy-analysis tools to 
reduce the impact of aviation on the environment 

•  Collaborating with Volpe Research Center, NOAA 
and DLR to leverage expertise and tools in aircraft 
emissions and weather/climate modeling. 
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