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Efficient Airspace Operations Under All Conditions

« Airspace operations is a trade-off balancing safety,
capacity, efficiency and environmental considerations

 I|deal flight: Unimpeded wind optimal route with optimal
climb and descent

« QOperations degraded due to reduction in airport and
airspace capacity caused by inefficient procedures and
disturbances

— Runway and airport constraints (fog, visibility, winds, noise)
— Terminal area constraints (procedures, wake vortex, noise)

— En Route Airspace Constraints
« Congestion
« Turbulence and Convective weather
« Contrails
* Volcanic Ash



En Route Airspace Constraints

Congestion Convective weather

Volcanic ash Contrails

* Frequency and the cause of the constraint/disturbance varies



NextGen Weather-ATM Integration Concepts

National Weather Service FAA Meteorology FAA ATM Operations



Research Goal

« Characterize and predict disturbance using a
combination of models, satellite observations and
aircraft based sensors

— Adapt from atmospheric sciences and weather research

« Develop methodology to design fuel efficient
trajectories in the presence of disturbances

 Integrate environmental factors and new fuel and
vehicle technologies in airspace simulations to evaluate
alternate concepts and policies for sustainable aviation
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Approach
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Fuel and Emission Models
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Variation of Emissions with Altitude
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Fuel and emission models undergoing additional verification using AEDT

(Collaboration with Volpe National Transportation Systems Center)
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CO, Emissions (Boeing 737-300)
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Contrails

 Aircraft condensation trails occur when
warm engine exhaust gases and cold
ambient air interact

— Contrails form when Relative Humidity
with respect to Water (RHW) >
Temperature dependent threshold

— Persist when Relative Humidity with
respect to Ice (RHI) >100%

« Contribution of contrails to global
warming may be larger than contribution
from CO, emissions

http://www.nature.com/nclimate/journal/v1/n1/full/nclimate1078.html
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Persistent Contrail Formation Model
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Volcanic Activity’

Air traffic during April-May, 2010 Iceland
(Eyjafjallajokull) volcanic eruption

Major volcanic eruptions in US
 Mount St. Helens (1980, Portland, OR airport)

Mount Redoubt (1989-90, Anchorage, AK Eruption
airport; 2009, Anchorage and Fairbanks, AK > I‘:‘;‘(‘:‘t’:;e"° =RipHED
airports)

« Hybrid Single Particle Lagrangian
Integrated Trajectory Model (HYSPLIT)

- Developed by NOAA Air Resources Laboratory for
predictions of volcanic plume locations

« Accuracy of dispersion models depends on eruption height and
strength

 Integration of plume locations with FACET and evaluate
concepts for plume refinement using observations

* Angela K. Diefenbach, Marianne Guffanti, and John W. Ewert , “Chronology and References of Volcanic Eruptions
and Selected Unrest in the United States, 1980- 2008, USGS Report 2009-1118, 2009 14

US volcanic activity 1980-2008



Source* 60.485 N 152.742 W 3108 mto 9144 m

NOAA HYSPLIT MODEL

Concentration (/m3) averaged between 6000 m and 8000 m
Integrated from 0600 23 Mar to 0700 23 Mar 09 (UTC)
SUM Release started at 0600 23 Mar 09 (UTC)

-TSO

>1.0E-14 /m3

1.0E-15/m3
>1.0E-16 /m3
>1.0E-17 /m3

Maximum: 8.8E-14
(identified as a square)

Minimum: 5.8E-19

CDC1 METEOROI OGICAI DATA
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Optimal Trajectory on Horizontal Plane

Find the optimal trajectory given the arrival and departure airports,
cruise speed and winds subject to environmental constraints

Aircraft equations of motion in the horizontal plane are

x=VcosO+u(x,y)
y=Vsinf+v(x,y) subjectto
Th=D

L=W

m=-f
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Optimization Subject to
Environmental Constraints

* Optimize horizontal trajectory by determining the heading

angle that minimizes the cost function
t /Fuel cost

J=1/2XT(tf)MX(tf)+f[Ct:\Cff+Cr°r(x,y)]dt
‘o Time cost

 Solution reduces to solving

Contrails penalty cost

x=VcosO+u(x,y)
y=Vsinf +v(x,y)

jo WV Hu)) oS04 v(xy)sing) (o oo () r(x.)
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Contrail Reducing Optimal Aircraft
Trajectories
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Optimal trajectories between 12 City-pairs
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Optimal Trajectories for 12 City Pairs

Investigate the tradeoff between persistent contrails formation and
additional fuel burn, with and without altitude optimization, for 12
city-pairs in the continental United States for a period of 24 hours

starting from 6 a.m. EDT on May 24, 2007

For each hour (24 hours in total)
For each city pair and direction (12 pairs, 2 directions)
For each possible flight level (6 levels between 290 — 400)
Compute 1 wind-optimal trajectory
Compute 20 wind-optimal contrails-avoidance trajectories
Compute fuel burn for each of the 21 trajectories

Compute persistent contrails formation time for each of the
21 trajectories
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Results for 12 City-pairs
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Dalily variations in the trade-off of emissions
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Climate Impact of Emissions: Linear Climate Models
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Results for 12 City-pairs
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« 2-3% additional fuel usage reduces surface temperature
change to its lowest value



Parameter Variation of AGTP

AGTP(H), K

AGTP(H), K
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Concluding Remarks

Developing a common methodology to model and
avoid disturbances affecting airspace

Integrated contrails and emission models to a
national level airspace simulation

Developed capability to visualize, evaluate
technology and alternate operational concepts

and provide inputs for policy-analysis tools to
reduce the impact of aviation on the environment

Collaborating with Volpe Research Center, NOAA
and DLR to leverage expertise and tools in aircraft
emissions and weather/climate modeling.
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