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The tracking of space objects requires frequent and accurate monitoring for collision
avoidance. As even collision events with very low probability are important, accurate pre-
diction of collisions require the representation of the full probability density function (PDF)
of the random orbit state. Through representing the full PDF of the orbit state for orbit
maintenance and collision avoidance, we can take advantage of the statistical information
present in the heavy tailed distributions, more accurately representing the orbit states with
low probability. The classical methods of orbit determination (i.e. Kalman Filter and its
derivatives) provide state estimates based on only the second moments of the state and
measurement errors that are captured by assuming a Gaussian distribution. Although the
measurement errors can be accurately assumed to have a Gaussian distribution, errors with
a non-Gaussian distribution could arise during propagation between observations. More-
over, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into
the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique
that is capable of propagating and estimating a more complete representation of the state
distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs
to generate particles that approximate the full PDF representation. The PF is applied in
the estimation and propagation of a highly eccentric orbit and the results are compared
to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate
its proficiency.

I. Introduction

In history, the pioneers of astronomy have always been curious about the planets by demonstrating
attempts in characterizing their trajectories. Astronomers such as Johannes Kepler and Carl Friedrich Gauss,
were among the first in the derivation of the laws of planetary motion and the methods of preliminary orbit
determination respectively.1 In order to accurately describe the trajectory of the orbit over time, we need
some observations of the motion of the space object, good models of the orbit’s mathematical dynamics and
measurements and an effective filtering method.

One of the earliest filtering methods developed was a linear filtering method known as the Kalman Filter
(KF), developed by Rudolph Kalman, as a linear filtering method for estimating the state by predicting its
mean and covariance through the linear dynamics and updating them whenever measurements are available.2

The major assumption for this method was that the underlying mathematical model dynamics were linear
and that all the error terms and measurements possess a Gaussian distribution. However, since most systems
are nonlinear in nature, a derivative of the KF was derived, known as the Extended Kalman Filter (EKF)3 to
tackle nonlinear systems. This is probably the most widely used estimation algorithm for nonlinear systems
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based on the assumption that the systems possess almost linear properties based on the time scale of the
updates.4–7 The EKF works by computing the linearized dynamics and measurement models based on the
assumption that the Jacobian matrix exists. a The mean of the state is predicted through the nonlinear
dynamics and the covariance matrix is predicted linearly based on the computed state transition matrix.

Other filtering methods that have been proposed for nonlinear dynamics include the Unscented Kalman
Filter (UKF),5,10 which uses a deterministic sampling technique called the unscented transform to select
a minimal set of sample points known as the sigma points around the mean of the state. These sigma
points are then propagated through the nonlinear dynamics and then the mean and the covariance are
eventually constructed from these weighted sigma points.5,11 The UKF is considered to have superior
implementation properties to the EKF since it does not require the computation of the Jacobian matrices
and it is comparable to the second order Gauss filter.11,12 However the UKF is still somewhat limited for non
Gaussian distributions. Despite that the sigma points are propagated through the nonlinear dynamics, the
final mean and covariance are calculated from these points and hence represent only second order moment
statistics that are insufficient for a non Gaussian representation in some cases. Other variations of the KF are
the square root unscented Kalman Filter,12 central difference Kalman Filter,13 ensemble Kalman Filter,14

Schmidt-Kalman Filter15 and the Invariant Extended Kalman Filter16 , to name a few. These filters attempt
to estimate the state and the covariance by approximating the nonlinear dynamics with some representation
of the mean and covariance while assuming Gaussian characterization.

In order to incorporate the non-Gaussian or nonlinear elements in our models, we consider using the
Particle Filter (PF). The PF is a sequential Bayesian algorithm that can be used for nonlinear systems and
non Gaussian distributed states. The Bayesian approach to state estimation involves the construction of the
PDF of the current state of an evolving system conditioned on the accumulated time history of observations or
measurements.17,18 The central idea of the PF is to estimate the required state probability density function
(PDF) by using a set of random samples (particles) with their corresponding weights. As the number of
particles increases, the representation of the required PDF becomes more accurate. The propagation and
prediction rules are such that the combined weights of the particles in a given region will approximate the
integral of the PDF over the region to a value of one.17,19

Some work has been done by other researchers for orbit determination using the PF such as Gang and
Xiao-Jun20 by adapting the number of particles required, due to the fact that the PF experiences a problem
known as sampling degeneracy. This is when the effective number of particles required to fully capture the
PDF decreases over longer durations of time, caused by small measurement noise or data outliers. Their
work was done to compare the PF to EKF and UKF over shorter durations of time and to deduce to optimal
number of particles required for an orbit with a low eccentricity of 0.001165. In our study, we have found
that orbits with lower eccentricities are well behaved over relatively shorter durations compared to highly
eccentric orbits whose nonlinear dynamics are more pronounced at periapse. Hence, we attempt to address
these effects in our work. A thorough investigation of the PF was also presented by Arulampalan et al.,19 to
study the various derivatives of the PF algorithm. Their analysis was focused solely on a nonlinear dynamic
scalar case and over relatively shorter durations of time as well. In,21 Soto also presented some work on a self
adaptive PF that calculates the number of particles required at each iteration and illustrates an example for
a 2-dimension dynamic model. However, such constraints are challenging to apply to a larger dimensional
model and are computationally costly. In relation to orbit determination, other work has also been done
using the PF by Hwang and Speyer22 on an adaptive resampling method of avoiding sampling degeneracy
for relative positioning using GPS carrier-phase measurements. The orbit in question was nearly circular
and hence do not depict huge nonlinear behavior effects that are present at apoapse and periapse. Also, the
simulations were performed over relatively shorter durations.

The research to be presented in this paper, is focused on applying the PF for statistical orbit determination
by tackling highly nonlinear orbits with larger eccentricities and larger state dimensions. We demonstrate
the state predictions and measurement update performances comparing the results obtained from using the
PF to the EKF and a GMM that uses the UKF as a filter.

II. Orbit Dynamics and Measurement Models

Practical application of the orbit determination (OD) process requires the knowledge of the dynamic
model and the observation model as accurately as possible. This includes deriving the equations of motion

asince some systems may contain discontinuities or singularities,8,9 so the Jacobian may not always exist.
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of the satellite, including the best known representations of many complex perturbations (e.g. atmospheric
drag, solar pressure and higher-order terms in the gravity potential). However, since our purpose is to study
and demonstrate the PF for this preliminary stage of research, we will work with an idealized assumption
that only point mass gravitational forces exist between the two bodies (the earth and the satellite).1,23

Process noise will be included to account for un-modeled perturbations. The derivation for the governing
equations are shown as follows:

Ẍ = ∇(U) (1)

= ∇(
µ

R
) (2)

= − µ

R3
(Xi + Y j + Zk) (3)

where U is the potential energy for the earth point mass and ∇ is the mathematical operator for the gradient,
defined as ∇ = δ

δX i+ δ
δY j+ δ

δZk. The gradient of the potential energy equals to the force applied to the mass
of the satellite. Hence, in deriving the equations of motion of the satellite, the acceleration of the satellite
Ẍ is equated to the gradient of the potential energy, noting that µ is the earth’s gravitational constant and
the distance R of the satellite from the earth is defined as R =

√
X2 + Y 2 + Z2. The state vector X is the

position and velocity states in Earth Centered Inertial (ECI) frame X = [X Y Z Vx Vy Vz].
The observation model uses range measurements obtained from either an earth-based or space-based

observing instrument within its field of view. The measurement used in this study is the range measurement,
defined as the distance between an earth or space-based instrument performing the measurement and the
satellite. If the position vector of the instrument is rj and the position vector of the satellite is r, the range
ρj is defined as the scalar magnitude of the position vector of the satellite with respect to the instrument
j,23 given as

ρj = [(r− rj) • (r− rj)]
1
2 + w(t) (4)

It is important that the correct transformations are implemented so that the instruments and the satellites
observed are in the same frame. We present the dynamic model in simplified canonical form and the
observation model as nonlinear expressions that are functions of the time varying state X. The process noise
v(t) and measurement noise w(t) are added to the dynamic and observation models f and h respectively to
model the uncertainties as zero-mean Gaussian random variables with covariances Q(t) and R(t). Equations
(3) and (4) , can be written in the canonical form, where

Ẋ = f(X, t) + v(t) (5)

Y = h(X, t) + w(t) (6)

Equations (5) and (6) are then presented as discrete models showing the evolution of the state sequence
and measurements at discrete time intervals.

Xk = fk(Xk−1,vk−1) (7)

Yk = hk(Xk,wk) (8)

III. Extended Kalman Filter

The EKF is implemented based on the estimation of the states using the discrete system in Equations
(7) and (8). These equations are linearized locally about the previous estimate as a sufficient description
of the nonlinear system with the major assumption that the linearized dynamics are Gaussian distributed,
where F and H are the Jacobian matrices for the nonlinear functions f and h respectively

Fk =
dfk(X)

dX
|X=Xk−1|k−1

(9)

Hk =
dhk(X)

dX
|X=Xk|k−1

(10)

(11)
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The EKF can be described in three steps; Initialization, Time Update or Prediction and Measurement
Update, with detailed equations shown in.4,19 The initialization step assumes the knowledge of the initial
state condition with an a priori covariance matrix. The time update predicts the state and covariance
matrix at the next time step and finally the state vector and covariance matrix are updated using the
available measurements at that same time step.

The EKF however, is not an optimal estimator model, this can cause the filter to diverge quickly. As only
the mean and the state covariance matrix are propagated, the statistical description of the state estimate is
limited to a Gaussian PDF.

IV. Splitting Gaussian Mixtures Method

The Splitting Gaussian Mixtures Method uses an initial Gaussian distribution to represent the state and
splits this into a sum of Gaussian distributions upon detection of nonlinearity in the model during state
propagations. This algorithm was developed in detail by DeMars, Bishop, Jah, Giza and Kelecy in24–26 and
was proposed to capture nonlinearities during state propagations and is also capable of using a separate filter
such as the UKF for measurement updates. The PDF of the Gaussian Mixture Model (GMM) is defined as
a sum of Gaussians as follows:

p(X) =

L∑
i=1

wipg(X;mi,Pi) (12)

pg(X;m,P) = (2π)−
n
2 |P|− 1

2 exp{−1

2
(X−m)TP−1(X−m)} (13)

where m and P are the mean and covariance of the random vector X, L represents the number of components
in the GMM and wi are the weights of the individual Gaussian components. The sum of all the weights need
to add up to one to retain the support of the PDF property that the area underneath the function must
equal one.

The nonlinearity during the state prediction is detected by calculating the differential entropy that is
equivalent to the amount of disorder or surprisal in a random variable or vector. Whenever the differential
entropy exceeds a preset threshold, then nonlinearity has been detected during the state propagation.24 The
differential entropy is defined by

H(X) = E{− log p(X)} (14)

upon further evaluation and simplification, the differential entropy becomes

H(X) =
1

2
log |2πeP| (15)

The time rate change of the differential entropy is given as

Ḣ(X) =
1

2
trace{P−1Ṗ} (16)

where
Ṗ(t) = F(X(t), t)P(t) + P(t)FT (X(t), t) (17)

After further simplification, and on the special assumption that the linearized dynamical system has the
property that the trace of F(X(t), t) = 0, then the differential entropy is a constant

Ḣ(X) = 0 (18)

and so it is easy to see that over time, when a nonlinearity is detected the assumption of the trace of
F(X(t), t) will not hold and so the algorithm will trigger a splitting process to split the initial Gaussian
distribution into a sum of Gaussians. The differential entropy for the linear case is computed using the
covariance matrix obtained from computing the Jacobian and the state transition matrices. To compare
this to the nonlinear case, the covariance matrix can be computed using the UKF. Moreover, there are cases
when the F(X(t), t) 6= 0 and so both the linear and the nonlinear differential entropies must be computed at
each time step online and this can be computationally costly. Moreover, the GMM method represents a part
of the filtering algorithm. For this example the GMM uses the Unscented Kalman Filter (UKF) (please see
References5,10 for details of the UKF algorithm) to perform the measurement update process which requires
a number of sigma-points based on the dimension of the state for each individual Gaussian component.
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V. Particle Filter

In order to incorporate the higher order moments of the state and measurement errors, we need to be
able to study the evolution of the full state PDF in the OD process. The Particle Filter (PF) is effective in
estimating the full state PDF of nonlinear models or non-Gaussian PDFs.19,20,27 The PF is a simulation-
based filter based on the sequential Monte Carlo approach. The central idea of a PF is to represent the

required probability density function (PDF) by a set of N >> 1 random samples (particles) {X(i)
k }

N

i=1
, with

associated weights {w(i)
k }Ni=1, such that

p(Xk|Yk) ≈
N∑
i=1

w
(i)
k δ(Xk −X

(i)
k ) (19)

where the particles are identically and independently distributed (i.i.d) samples drawn from the initial
PDF with an initial Gaussian distribution assumption. The weights are the probability values that are the
approximations of the relative densities of the particles such that their sum equals one.19,20,27 The state
estimate is given as a conditional density called the posterior density p(Xk|Yk). Estimators based on this
posterior density are constructed from Bayes’ theorem, which is defined as

p(X|Y) =
p(Y|X)p(X)

p(Y)
(20)

where p(X) is called the prior density (before measurement), p(Y|X)is called the likelihood and p(Y)is
called the evidence (normalizes the posterior to assure the integral sums up to unity).19,27 Let Xk =
(X0,X1, ...,Xk) and Yk = (Y0,Y1, ...Yk) be the stacked vectors of states and observations up to time k
and {wik, i = 1, 2, ..., N} represent the weights of the N particles at each time k. In the execution of the
general PF algorithm, a common effect ensues where the variance of the weights increases over time. This
phenomenon is known as sampling degeneracy, in that there is an insufficient number of effective particles
required to fully capture the PDF. A way of overcoming the sampling degeneracy is to derive the importance
distribution that minimizes the variance of the distribution of the weights. The corresponding minimum
variance weights are given by:

wk = wk−1p(Yk|Xk−1) (21)

wk = wk−1 ×
∫
p(Yk|Xk)p(Xk|Xk−1)dXk (22)

This means that the minimum variance weights can be calculated before the particles are propagated
to time k. From the equations above, we see that there is a problem in the sense that the evaluation of
the integral generally does not have an analytic form and that the particles weight update are based on the
knowledge of the state at the past time step and the current measurement only i.e. p(Xk|Xk−1,Yk). So, a
reasonable choice for the importance distribution is the transition prior p(Xk|Xk−1).19

The estimation process can be sectioned into three parts: initialization, time update or prediction and
the measurement update. Each step is described below for the PF implementation.

1. Initialization at k = 0, for i = 1,...,N

• Sample N particles from the prior Xi
0 ∼ p(X0)

• Calculate the weights of the particles from the initial distribution (assume Gaussian) wi0 =
p(Y0|Xi

0)

• Normalize the weights wi0 =
wi

0

wT
using total weight wT =

∑N
i w

i
0

2. Time Update or Prediction at k ≥ 1, for i = 1,...,N

• Predict the particles through the dynamics

Xi
k = f(Xi

k−1, k − 1) + vk (23)

p(Xk|Yk−1) =

∫
p(Xk|Xk−1)p(Xk−1|Yk−1)dXk−1 (24)
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3. Measurement Update

• Update the weights using the innovation from the measurements assuming that the measurements
are Gaussian distributed

wik = wik−1

p(Yk|Xi
k)p(Xi

k|Xi
k−1)

q(Xi
k|X ik−1,Yk)

(25)

• We assume that the evidence (also known as the importance distribution) q(Xi
k|Xi

k−1,Yk) in this
case is equal to the prior density p(Xi

k|Xi
k−1),27 so that,

wik = wik−1 × p(Yk|Xi
k) (26)

• Normalize the weights wik =
wi

k

wT
using total weight wT =

∑N
i w

i
k

• The final posterior density estimate p(Xk|Yk) =
∑N
i=1 w

(i)
k δ(Xk −X

(i)
k )

Due to the fact that the prior density is usually broader than the likelihood, only a few particles will
be assigned higher weight during the measurement update step causing sampling degeneracy. The solution
to overcome sampling degeneracy is to resample the particles. Let Neff denote the effective sample size,

which can be estimated by:19,28 N̂eff = 1∑
i
(wi

k
)2

. Also let Nth denote a lower threshold for the effective

sample size, which is arbitrarily chosen with respect to the accuracy desired; the larger the threshold, the
more accurate the PDF results and the more computational cost incurred.

If Neff > Nth, then the sampling degeneracy is not low enough, the filter continues on to step 2 for the
next time update. Otherwise, we replicate the particle with the highest weight to replace the particles falling
below the threshold and then normalize the weights. However, resampling does have its own shortcomings,
since the particles that have higher weights are statistically selected each time thus losing the diversity of the
samples. This loss of diversity may also cause the divergence of the estimates. To avoid the loss of diversity
the replicated particles are “jittered” by adding process noise to spread the resampled particles.19,28

VI. Simulation Scenario

For the first test case scenario in comparing the EKF to the PF, we consider a highly eccentric orbit of
eccentricity 0.8181 with an orbital period of 24hrs. The satellite has four opportunities for measurements
from 2 Deep Space Network ground stations located at Canberra, Australia and Madrid, Spain for a duration
of 75 minutes each using the Satellite Toolkit (STK) software for a simulated realistic scenario. The last two
measurement opportunities are obtained from a space-based observation network called TDRSS (Tracking
and Data Relay Satellite System) for a duration of 15 minutes each.

Figure 1. Illustration of the orbit trajectory and the instances of measurement observations from the DSN ground
stations and the TDRSS satellites during the first orbital period
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For the second test case scenario in comparing the PF to the GMM, the same orbit is used. The
measurements are available for the last 15 minutes of the orbital period toward apogee using the DSN in
Canberra, Australia. In comparing the PF to the GMM, we are interested in looking at the state propagation
of the PDF over time as it evolves through the orbit. The state PDF update performed at the final time
will be illustrated in the comparison of the PDF capture representation between the PF and the GMM.

VII. Simulation Results

VII.A. EKF vs PF

In Figure 2, we illustrate the estimation errors and the 2-σ error bounds for the EKF compared to the PF
over 1 orbital period. The overall mean estimation errors (both prediction/propagation and measurement
updates) are given in Table 1. The values in the table clearly show that the PF’s mean errors are closer to
zero compared to the EKF. This can be attributed to the diversity of the particles that take into account
the modeled uncertainties and the nonlinearities of the dynamic model. While for the EKF, the mean and
the covariance only carry information up to the second moments alone and hence a lot of the uncertainties
are pronounced during the prediction step but once the measurements are available, the EKF manages to
converge the errors closer to zero, as is illustrated well in Figure 2(e). The values of the highest measurement
update errors over one orbital period are shown in Table 2, for each of the filters during the measurement
update instances. The errors in the tables and the plots are given in the VNB frame, which represents
the transformed states from Earth-Centered-Inertial (ECI) to the body fixed VNB frame in the directional
Velocity, Binormal and Normal components. The Velocity component is in the direction of the velocity
vector, the Bi-normal component is perpendicular to the Velocity component and the Normal component is
in the normal direction of the trajectory plane.
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(b) PF: N-direction
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(c) PF: B-direction
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(d) EKF: V-direction
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(e) EKF: N-direction
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(f) EKF: B-direction

Figure 2. Position errors (blue solid lines) and 2-σ error bounds (black dashed lines) for 1 period in VNB frame for
PF (1000 particles) and EKF.

Table 1. Mean position absolute errors in
meters in the VNB direction over 1 period

Direction EKF (m) PF (m)

Velocity 3.075 0.0880

Normal 6.743 0.631

Bi-Normal 2.834 0.0758
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Table 2. Highest measurement update
errors in meters in the VNB direction
during all four observations

Direction EKF (m) PF (m)

Velocity 6.532 6.768

Normal -37.34 30.62

Bi-Normal -19.31 −7.761

We also investigate to see how the performances for the EKF and the PF compare to one another over an
additional 4 periods of state propagation. In Figure 3, we illustrate the estimation errors and the 2-σ error
bounds for the EKF compared to the PF over 1 orbital period and an additional 4 periods of propagation to
illustrate the predictive accuracy of the PF. In this simulation, we see that for both the PF and the EKF, the
position estimation errors are spiked at periapse in the Velocity direction. This is attributed to the fact that
the dynamics of the orbital model are changing rapidly at this location and this is when the magnitude of
the velocity is at its highest value. Moreover, we can also see the 2-σ error bounds for the Velocity direction
are at their highest values at periapse and apoapse. A vice-versa behavior is noted in the Binormal direction,
whereby the uncertainty bounds are at their lowest at apoapse and periapse, due to the law of conservation
of angular momentum. Based on the fact that we are using 1000 particles for the PF, it is implied that the
more particles we use the more accurate the PDF. So, we can assume that for an accurate prediction of the
state PDF over longer periods of time, we can expect reduced growing errors especially around peripase and
hence have a better way of predicting the state compared to using the EKF. The highest propagation error
peak values are given in Table 3. It is also important to note that describing the errors bounded by 2-σ error
bounds is not an accurate representation since the particles do not possess a Gaussian distribution, as will
be illustrated in Sections VII.B and VII.C.
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(a) PF: V-direction
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(b) PF: N-direction
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(c) PF: B-direction
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(d) EKF: V-direction
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(e) EKF: N-direction
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(f) EKF: B-direction

Figure 3. Position errors (blue solid lines) and 2-σ error bounds (black dashed lines) for 5 periods in VNB frame for
PF (1000 particles) and EKF. Note that apoapse occurs at day boundaries and periapses occur at half-day points.

VII.B. GMM vs PF

In Figure 4, we illustrate the state PDF estimate with measurement updates at the end of the first orbit.
The GMM is illustrated using 1000 Monte Carlo (MC) runs to sample the state PDF and these samples
are propagated through the dynamics to depict the Gaussian mixtures PDF capture. The Final PDF for
the GMM is shown to have split from the initial single Gaussian PDF into three Gaussian mixtures with
their respective weights given for the mean points GM1, GM 2 and GM 3 in Figure 4(a) and 4(d). The
probability contours attempt to capture the probability values of each of the individual samples/data points.
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Table 3. Highest propagation error peak
values during the last four orbital peri-
ods

Direction EKF (m) PF (m)

Velocity 269.9 186

Normal 19.46 1.5

Bi-Normal 8.998 4.988

It is clear that the three Gaussian mixtures provides an approximation of the entire PDF using the Gaussian
mixtures. In Figure 4(b) and 4(e), we illustrate the Gaussian mixtures using five Gaussian components with
their respective weights given for the mean points GM1, GM 2, GM 3, GM 4 and GM 5. The splitting GMM
has a library of the number of Gaussian components as well as the component weights, means and a fixed
variance for each component provided in Reference.24 One assumption is that the Gaussian components’
equal spacing from each other (hence the pre-calculated means of the components), suffices in capturing the
non-Gaussian distribution.

Moreover, a separate filter (the UKF in this case) is required to perform any measurement update, adding
the extra computational cost for performing the UKF for each of the three Gaussian mixtures. On the other
hand, the PF provides the state PDF as a collection of the individual 1000 particles with their respective
updated weights using the information available from the measurements. Hence, each particle contributes
to the capture of the PDF and there exists little to no overlap compared to the overlap that might appear
using the GMM once we perform a measurement update. Since, the measurement noise is usually small, the
updated PDF tends depict a more kurtosed distribution as illustrated by the PF, hence for measurement
updates, the GMM and the UKF will provide Gaussian mixtures with extra overlap to account for the
distribution present in the heavy tails.

The colored particles are weighted wi as follows: violet is for wi ≤ 0.002, cyan is for wi ≤ 0.004, blue
is for wi ≤ 0.006 and black is for wi > 0.006. In Figure 4(a), 4(b) and 4(c), the plots illustrate the PDF
representation in the X-Y plane and in Figures 4(d), 4(e) and 4(f), the plots illustrate the PDF representation
in the X-Z plane.

VII.C. Non-Gaussian Measures

To demonstrate the non-Gaussian nature of the PDF, we illustrate the higher order moments of the PDF
propagation by showing the skewness and kurtosis of the state PDF over one orbital period in Figure 5.
Skewness is defined as the third moment of the PDF, representing the shift of the PDF peak to the left or
to the right of the center point. In Figure 5(a), we see how each position component’s skewness changes
in the VNB direction. The Bi-Normal component shows more pronounced changes in skewness especially
as it passes through periapse at the 48th data point. The Velocity component’s skewness shifts along the
orbit trajectory from positive to negative as it goes from apoapse to periapse respectively. While, for the
Normal component, we do not experience a profound pronounced skewness and this is due to the fact the
orbital motion takes place in a plane hence there is no state evolution in the Normal direction apart from
process noise. Kurtosis is defined as the peaked-ness of the PDF; a negative value represents a smoother
peak and a positive value represents a sharper peak. This is computed as the fourth moment. It is clear that
the Normal component is less peaked compared to a Gaussian distribution while the Binormal and Velocity
components are highly peaked. In the Velocity component, we see that the distribution is highly kurtosed
when the true anomaly is near 90◦ and near 270◦. Also, in the Binormal direction, we see the distribution is
highly kurtosed near periapse and apoapse relative to the rest of the locations on the orbit trajectory. For a
Gaussian distribution, the skewness and kurtosis are zero and three respectively. In Figure 5(b), the excess
Kurtosis (Kurtosis minus 3) is plotted. This represents the change from a Normal distribution, which would
have a Kurtosis of 3.

VIII. Conclusion

Estimation of the PDF using the PF provides us with a more accurate representation of the region of
uncertainty of our state estimates. For collision avoidance, this PDF knowledge will give us a more accurate
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(f) PF: XZ-plane

Figure 4. PDF Position densities for GMM using 1000 MC runs and showing the 3 and 5 Gaussian Mixture’s mean
location and contours compared to the PF’s particles and their weights to sum up the entire PDF.
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Figure 5. The Skewness and Excess-Kurtosis of the PDF over 1 orbital period using the PF for 1000 particles.

representation of the likelihood of low-probablility but important events, that can be used with a decision
making scheme to predict potential collisions and hence, implement the correct maneuvers required. The
comparison of the PF to the EKF demonstrated that the PF has more potential and versatility for providing
lower estimation errors and better propagation values with lower error bounds over time. In comparing the
PF to the GMM, it was shown that the PF provides a more accurate PDF capture with less redundancy,
compared to the GMM that uses a weighted sums of Gaussians that possess a potential of uncertainty
regional overlap and redundancy.
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