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The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 

85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both 
short-range and long-range correlations are included in the Schrödinger equation at the 
same time, by using a combination of a modified method of polarized orbitals and the 
optical potential formalism. The short-correlation functions are of Hylleraas type. It is 
found that the phase shifts are not significantly affected by the modification of the target 
function by a method similar to the method of polarized orbitals and they are close to the 
phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates 
that the correlation function is general enough to include the target distortion 
(polarization) in the presence of the incident electron. The important fact is that in the 
present calculation, to obtain similar results only a 20-term correlation function is needed 
in the wave function compared to the 220- term wave function required in the above-
mentioned calculation. Results for the phase shifts, obtained in the present hybrid 
formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave 
resonances in He atom and hydrogen ion have been calculated and compared with the 
results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 
2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the 
present method, which has the advantage of including corrections due to neighboring 
resonances, bound states and the continuum in which these resonance are embedded.  

 
                                                                                       PACS number(s) 34.80.Bm     
 

I. INTRODUCTION 
 
There are a number of scattering theories and it is important to test them. 

Scattering of electrons and positrons by hydrogenic systems provides such a test because 
the target function is known exactly, allowing us to compare and test the various methods 
of calculations. At low incident energies, the distortion of the target produced by the 
incident electron is important. In previous papers [1, 2, 3] on scattering, we showed that it 
is possible to include long-range polarization potential proportional to -1/r4 and short-
range correlations via an optical potential in the Schrödinger equation at the same time. 
One of the methods used to take into account this distortion is the method of polarized 
orbitals [4], which includes the effect of polarization in the ansatz for the wave function 
for the scattering.  In previous papers [1, 2, 3], scattering phase shifts were calculated by 
using this hybrid method.  In [5], the P-wave calculation was based on the Feshbach 
projection operator formalism [6]. We do not use any projection operators in the present 
calculation but the important property, namely, that the phase shifts are rigorous lower 
bounds to the exact phase shifts, is retained. The phase shifts obtained by the close-
coupling approach also have this property while those obtained from the Kohn variational 



principle, and other methods closely related to this metod, do not have any bounds except 
at zero incident energy. We use Rydberg units: energy in Rydbergs and length in Bohr 
radius a0. The phase shifts, throughout, are in radians.   

Now we apply the formalism given in [3] to the P-wave elastic scattering of 
electrons from Coulombic target He+. Phase shifts obtained are compared with other 
calculations. We show that the same formalism can be used to calculate 1P and 3P 
resonance parameters in electron plus target systems. Resonances are exhibited, at 
appropriate energies, when the incident electron excites the target electron and itself gets 
attached to the excited target for a finite duration of time. These resonances have been 
investigated extensively by the use of the Feshbach projection operator formalism [6], 
close-coupling approach [7], complex-rotation method [8], etc.  

 
II. THEORY 

 
Below we describe very briefly the formalism presented in [3]. In order to replace 

the many-particle Schrödinger equation with a single-particle integrodifferential 
equation, we write the wave function for any angular momentum L in the form  
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where Cλ are the unknown coefficients. The (± ) above refers to singlet (upper sign) or 
triplet (lower sign) scattering, respectively. The summation over λ is from 1 to N, the 
number of terms in the expansion. The effective target wave function can be written as  
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and 12ϑ  is the angle between 1r

  and 2r
 .  We have replaced the step function ),( 21 rrε   

used by Temkin [4] by a smooth cutoff function )( 1rβχ  which is of the form 
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where n≥3.  Now the polarization takes place whether the scattered electron is inside or 
outside the orbital electron. The polarization function given in Eq. (2) is valid throughout 
the range. This is unlike the step function ),( 21 rrε  used by Temkin [4] which ensures that 



the polarization takes place when the scattered electron r1 is outside the orbital electron 
r2. Furthermore, the function in Eq. (5) gives us another nonlinear parameter β, which is a 
function of k, the incident electron momentum. This term guarantees that 0/)( 2

11 →rrβχ  
when 01 →r  and it also contributes to the short-range correlations in addition to those 
obtained from the correlation function LΦ , and therefore, is useful to optimize the results.  

Beyond the terms containing u(r) explicitly (those are the terms giving rise to the 
exchange approximation), the function ΦL is the correlation function. For arbitrary L this 
function is most efficiently written in terms of the Euler angles [9]: 
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The Dκ ,ε functions (ε=+1,-1) are called rotational harmonics [9]. The f’’s above 

are the generalized “radial” functions, which depend on the three residual coordinates 
that are required (beyond the Euler angles) to define the two vectors r1 and r2. The 
distance between the two electrons is given by || 2112 rrr 

−= . 
 

The radial functions ±1
1f  for L=1 are defined as follows:  
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  The angle between 1r

  and 2r
  is given by 12ϑ , and 
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The minimum value of l is equal to 1 while that of m and n is 0. The wave 

function of the scattered electron is given implicitly by 
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where H is the Hamiltonian and E is the total energy of electron-target. We have, in 
Rydberg units, 
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where k2 is the kinetic energy of the incident electron and Z is the nuclear charge which is 
two for He+.  

 



We can write the final scattering equation in the form  
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We give below a few of the quantities: 
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The direct potentials are given by 
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We give x1 below 
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 All other quantities are fairly complicated and they are not given here. It can be 

seen from the detailed expressions that (x1+ x3) has a term 442
9

rZ
, where 9/(2Z4) is the 

dipole polarizability of the target with nuclear charge Z. The exchange terms are given by 
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 The exchange polarization terms are too detailed and are not given here. The 
optical potential is now given by  
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where '
0Ψ  is the wave function 0Ψ  given in Eq. (1) without the correlation term LΦ . The 

eigenvalues sε  are given by 
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 The functions )(s

LΦ  are normalized to 1. The summation over s in Eq. (20) is from 1 to 
N, the number of terms in the expansion. This optical potential includes the effects of 
polarization of the target. The right hand side of Eq. (20) has not been given explicitly 
because it contains a large number of terms. Provided the total energy E < sε , the optical 
potential given in Eq. (20) is negative definite and therefore corresponds to an attractive 
potential. Gailitis [10] has shown that as the number of terms in the correlation function 
is increased, the optical potential becomes more negative. Consequently, phase shifts 
increase as the number of terms is increased. 

In order to derive the equation for the scattering function u(r), the coefficients Cλ 
must be known. The detailed derivation is given in [1] and is not repeated here. In [5], the 
optical potential of the type given in Eq. (20), in the absence of long-range potential, was 
derived by using the Feshbach projection operator formalism based on projection 
operators P and Q [6]. In [5], the correlation function is such that it takes into account 
only the short-range correlations and there is no direct long-range potential proportional 
to 4/1 r in the scattering equation satisfied by u(r). The present formalism is independent 
of the projection operators P and Q. 
 

III. CALCULATIONS AND RESULTS 
 
 Equation (13) is solved for the continuum function u(r) by the noniterative 
method of Omidvar [11] and the phase shift η is obtained from the value of the function 
at a large distance: 
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Since the Coulomb field extends very far, Eq. (13) has to be integrated to a large distance 
especially for small values of k. From u(r) and its derivative the phase shift η, the 
deviation from the pure Coulomb field of (Z-1) is readily extracted, provided the higher 
terms in the expansion of Coulomb functions 1F  and 1G  [12] are retained in the 
scattering function u(r): 
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where 1F  is the regular Coulomb wave function and )(1 rG is the irregular Coulomb wave 
function, and η is the required phase shift for the L=1 partial wave.  
 In order to obtain phase shifts which can be compared to those obtained by the 
method of polarized orbitals, we exclude the correlation terms LΦ  in Eq. (1). The phase 



shifts, optimized with respect to the nonlinear parameter  β, obtained for P1  and P3 , are 
given in Table I and compared with those obtained by Sloan [13]. These results include 
contributions from the exchange polarization term. The present results have variational 
bounds, i.e., they are always lower than the exact phase shifts. We see that phase shifts, 
obtained using the polarized orbital method which is not variational, are always higher 
than the present ones. 
 In Table II, we give convergence of 1P phase shifts for k=0.1 with increasing 
number of terms in the correlation function. The results have been optimized with respect 
to the nonlinear parameters β, γ, and δ, with n=3, the optimum value. The nonlinear 
parameters are also given in the table. It is seen from the table that we do not need more 
than 20 terms to get results comparable in accuracy to those obtained with 220 terms in 
[5] without the use of the polarization term in the target wave function and using the 
projection operator formalism of Feshbach, where it is not possible to modify the 
formulism in such a way as to produce a direct polarization potential proportional to 1/r4 
in the scattering equation for u(r).   
 In Table III, we give 1P phase shifts for various values of the incident momentum 
for 20 terms and compare them with those obtained in [5] with 220 terms in the 
correlation function, but without the polarization term. We find that the results are 
comparable in accuracy to those obtained in [5] with longer expansions in the correlation 
function. This indicates that very long expansions do give fairly accurate results. We 
compare the present results with the pseudostate close-coupling results of Oza [14] and 
the results of Gien [15] obtained using the Harris-Nesbet method. 
 In Table IV, we give the convergence of 3P phase shifts for k=0.1 with the number 
of terms in the correlation function. The results have been optimized with respect to the 
nonlinear parameters β, γ, and δ, with n=3, the optimum value. The nonlinear parameters 
are also given in the table. We see from the table that we do not need more than 20 terms 
to get results comparable in accuracy to those obtained in [5] without the use of the 
polarization term in the target wave function. 

In Table V, we give 3P phase shifts for various values of incident momentum for 
20 terms and compare them with those obtained in [5] with 220 terms in the correlation 
function, but without polarization term. We find that the results are comparable to those 
obtained in [5] with longer expansions in the correlation function. This indicates that very 
long expansions do give fairly accurate results. We compare the present results with the 
pseudostate close-coupling results of Oza [14] and the results of Gien [15] obtained using 
the Harris-Nesbet method. 
 Fairly accurate results have been obtained by optimization of the nonlinear 
parameters only once. However, there is always a scope for further improvements of 
results by repeated variation of these nonlinear parameters, requiring a fair amount of 
computer time, especially when it is necessary to carry out the calculations in quadruple 
precision to obtain accurate results.  The main purpose of the variation of the nonlinear 
parameters is to obtain the largest value of the phase shift.  
 The uncertainty in results can be estimated by looking at the convergence of the 
results given in Tables II and IV. In the case of singlet P results, increasing N from 20 to 
35, the phase shift changes by four units in the fifth significant figure, while in the triplet 
case it is five units in the fifth significant figure.  



 The main aim of the paper has been to show that the inclusion of the long-range 
polarization term speeds up the convergence of the results and very few terms are needed 
in the correlation function.     
 

IV. RESONANCES 
 
 Doubly excited states or Feshbach resonances or autoionization states have been 
studied extensively [7, 8, 16, 17]. The resonance parameters can be inferred by 
calculating phase shifts at energies where a rapid change in phase shifts is observed.  The 
phase shifts for the 3P and 1P in the resonance regions are given in Table VI. Here we 
have used only 20 terms in the correlation function.  They are fitted to the Breit-Wigner 
form to obtain the resonance parameters, 
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where E=k2 is the incident energy, ηcalc. are the calculated phase shifts and η0,  A,  Г, and 
ER are the fitting parameters. ER is the resonance position and Г is the resonance width. A 
good way to determine resonance parameters from the phase shifts in the resonance 
region is to minimize the sum of squares of the difference between the left and right sides 
of Eq. (24), the difference being calculated at resonance energies given in Table VI.  The 
results of the fit are given in Table VII and they are compared with previous calculation 
of Bhatia and Temkin [16, 17].  We get for 3P resonance position at 58.3132 eV with 
respect to the ground state of the helium atom and width equal to 0.00697 eV compared 
to 58.3209 eV for the position [16] and 0.00890 eV [16] for the width, respectively. The 
latter results were obtained by using the Feshbach projection operator formalism [6]. The 
agreement is quite good, considering that only 20 terms have been used in the correlation 
function in the present calculation compared to 84 terms in [16] and corrections due to 
neighboring resonances, bound states and the continuum need not be calculated 
separately in the present calculation. The 1P results have been determined accurately 
from photoabsorption experiments [18, 19].  The present results for position and width, 
60.145 and 0.0356 eV, are very close to those obtained earlier [16] by using the Feshbach 
projection operator formalism [6]. The present results are within the range of 
experimental results [18] which are 60.130 ±  0.015 eV for the position and 0.038± 0.004 
eV for the width. The line shape parameter q for a resonance which is the result of the 
photoabsorption is given by 
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where 
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The quantity Bσ  is the background cross section .The line shape parameter can be 
determined by noticing where the cross section aσ  goes to zero. This gives us q=-2.533 



which is within the ranges of the experimental values -2.80 004.0± [18] and -2.55 ± 0.16 
[19]. The value obtained for q in [16] is -2.2910. Again, it should be emphasized that this 
calculation has only 20 terms in the correlation function and there is no need to calculate 
separately the various quantities given in [16, 17].  

We also calculate 3P resonance state in H − . The phase shifts obtained using 20 
terms are given in Table VIII.  They are fitted to the Breit-Wigner form given in Eq. (24). 
We obtain, with respect to the ground state of the hydrogen atom, 9.74014 eV for the 
position of the resonance and 0.00631 eV for the width. This should be compared to 
9.72549 and 0.0063 eV, obtained in [16], where 84 terms were used in the correlation 
function. The present results are also given in Table VII. This resonance state has been 
observed by McGowan [20] who gets 9.73 eV for the position and 0.01 eV for the width. 
The line shape parameter q obtained in this calculation is -2.62. However, there is no 
experimental value available for this parameter.   

To convert resonance parameters to eV, reduced Rydberg RM=13.603976 eV is 
used for resonances produced by photoabsorption while ∞R =13.605826 eV is used for 
resonances produced by electron-impact on the target, see the Appendix in [16] for 
details.  
 

V. Conclusions 
 
 In conclusion, we have applied the hybrid theory, in the presence of an optical 
potential, in which long-range and short-range correlations, Eq. (13), have been taken 
into account at the same time. The present results have been calculated variationally and 
therefore have lower bounds to the exact phase shifts and they are close to those obtained 
in Ref. [5], using the Feshbach projection operator formalism. In the present calculation, 
shorter expansions of only 20 terms are needed in the correlation function to get results 
comparable in accuracy to those obtained in [5] with 220 terms. Accurate resonance 
parameters have also been obtained using short expansions and they agree well with 
those obtained using the Feshbach formalism. The calculation in [16, 17] is also far more 
complicated than the present calculation. 
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Table I. Comparison of phase shifts η(radians) without correlations with 
those obtained by the method of polarized orbitals [13]. 
                                1P                       3P 
            k     Present η         ηPO     Present η         ηPO 
           0.2    -0.047405     -0.0394     0.20143      0.2232 
           0.4    -0.050130     -0.0404     0.20715      0.2290 
           0.6    -0.053033     -0.0428     0.21448      0.2364 
           0.8    -0.054106     -0.0450     0.22119      0.2429 
           1.0    -0.053466     -0.0436     0.22582      0.2469 
           1.2    -0.049405     -0.0384     0.22779      0.2479 
           1.4    -0.042442     -0.0301     0.22726      0.2462 
           1.6    -0.032978     -0.0193     0.22474      0.2425 
           1.8    -0.021577     -0.0068     0.22141      0.2375 
           2.0    -0.009349     +0.0066     0.21699      0.2317 
 
  
 
Table II . Convergence of 1P phase shifts(radians) for electron-helium ion 
for k=0.1 
          N           β          γ           δ          η 
           0          1.10    -0.04657765 
           4          1.00        1.75         2.00  -0.04047531 
         10          0.85         1.40         2.00  -0.03839231 
         20           0.75         1.50           2.40  -0.03830765 
         35          0.75         1.50         2.40  -0.03812654 
 
  
 
Table III. Phase shifts η(radians) of 1P for various k for N=20 
           k    Present η         ηPQ     η(Oza)a     η(Gien)b 
          0.1    -0.038308    -0.038311   -0.03938  
          0.2    -0.038956    -0.038958   -0.04002      -0.0407 
          0.3    -0.039873    -0.039911   -0.04095  
          0.4    -0.040902    -0.040971   -0.04304  
          0.5    -0.041469    -0.041951   -0.04203      -0.0428 
          0.6    -0.041641    -0.042633   -0.04381  
          0.7    -0.041438    -0.042834   -0.04416      -0.0447 
          0.8    -0.039927    -0.042383   -0.04391  
          1.0   -0.037132    -0.039036   -0.04098       



          1.1   -0.035430    -0.035948         -0.0414 
          1.3   -0.026419    -0.026592   
          1.4   -0.020773    -0.019982   
aClose-coupling results of Oza [14]. bHarris-Nesbet method, Gien [15]. 
 
 
 
Table IV. Convergence of 3P phase shifts(radians) for electron-helium ion 
for k=0.1 
         N          β           γ          δ         η 
          0        0.90       0.19981 
          4        1.20         1.65       1.94     0.21332 
         10        1.80         1.65       1.84     0.21500 
         20        1.30         1.75       1.94     0.21511 
         35        1.30         1.75       1.94     0.21516 
 
 
Table V. 3P phase shifts η(radians) for electron-helium ion, N=20. 
           k     Present η         ηPQ      η(Oza)a    η(Gien)b 
         0.1     0.21516     0.21516        0.2148      
         0.2     0.21683     0.21681        0.2165      0.217 
         0.3     0.21945     0.21944        0.2192      0.219 
         0.4     0.22283     0.22283        0.2226      0.223 
         0.5     0.22662     0.22661        0.2263      
         0.6     0.23088     0.23048        0.2302      0.230 
         0.7     0.23417     0.23415        0.2337  
         0.8     0.23753     0.23744        0.2368      0.237 
         0.9     0.24038     0.24008        0.2393       0.240 
         1.0     0.24205     0.24202        0.2412       0.242 
         1.1     0.26196     0.24322   
         1.2     0.24379     0.24378   
         1.3     0.24370     0.24370   
         1.4      0.24320   
         1.5    0.2426120    
aClose-coupling results of Oza [14]. bHarris-Nesbet method, Gien [15]. 
 
 
 
 



 
Table VI. 3P and 1P phase shifts(radians) for electron-helium ion in the 
resonance region, N=20. 
 Incident energy         η(3P)  Incident energy         η(1P) 
           2.30       0.2426352            2.58     0.3202924 
           2.32       0.2426888            2.60     0.0902568 
           2.33       0.2427454            2.605     0.1412791 
           2.35       0.2426462            2.61     0.3382261 
           2.38       0.2432013            2.613     1.0553706 
           2.40       0.2435423                        2.615     2.2412107 
           2.41       0.2438905            2.617     2.6999855  
           2.42       0.2444182            2.619     2.8625805 
           2.43       0.2454991           2.6195     2.8857529 
           2.44       0.2470834           2.6197     2.8939338 
           2.45       0.2493821           2.621     2.9363176 
           2.46       0.2547154           2.625     3.0017527 
           2.47       0.2719629           2.63     3.0420385 
           2.49       0.2101979           2.64     3.0792809 
           2.50       0.2414073   
           2.51       0.2288624   
           2.53       0.2329417   
           2.60       0.2412823   
 
 
 
Table VII. Resonance parameters (eV) of 3P, 1P in He atom and of 3P in 
hydrogen ion and comparison with the results of [16]. 
        State   System   Present  ER   Present  Г    ER [16]     Г[16] 
           3P       He      58.3211a     0.00697    58.3209      0.00890 
           1P       He      60.1450a     0.03560    60.1450    0.0363 
           3P                H-        9.7401b     0.00631      9.7385    0.0063 
a Resonance  positions are with respect to the ground state of the helium 
atom. 
 bResonance position is with respect to the ground state of the hydrogen 
atom.  
 
 
 
 



 
Table VIII. 3P phase shifts for electron-hydrogen in the resonance region, 
N=20. 
                                E                      η 
                         0.700               0.4426468 
                         0.710               0.4657101 
                         0.713               0.5095985 
                         0.714               0.5466068 
                         0.715               0.6872032      
                         0.718               0.3222845 
                         0.719               0.3559484 
                         0.720               0.3731173 
                         0.722               0.3910457 
                         0.724               0.4000126 
                         0.725               0.4050968 
                         0.726               0.4074379 
                         0.729               0.4142897 
                         0.730               0.4155633 
                         0.735               0.4212373 
 
 
 
 
 


