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The free-free transition is studied for an electron-hydrogen in the ground state at low 
incident energies in the presence of an external homogenous, monochromatic, and 
linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is 
considered in the Debye-Hückel approximation. The calculations are performed in the 
soft photon limit, assuming that the plasma frequency is much higher than the laser 
frequency. The incident electron is considered to be dressed by the laser field in a 
nonperturbative manner by choosing the Volkov solutions in both the initial and final 
channels. The space part of the scattering wave function for the electron is solved 
numerically by taking into account the electron exchange. The laser-assisted differential 
and total cross sections are calculated for single-photon absorption /emission and no 
photon exchange in the soft photon limit, the laser intensity being much less than the 
atomic field intensity. The calculations have been carried out for various values of Debye 
parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted 
cross sections as compared to the field-free situation. A significant difference is noted for 
the singlet and triplet cross sections. The suppression is much more in the triplet states.   
 
 
 
I. INTODUCTION 
 
          In recent years much attention is being paid  to the atomic processes  of different 
atomic systems embedded in a plasma. The motivations for such studies are manifold and 
were already emphasised in earlier works [1- 10] (and further References cited therein). 
The purpose of the present work is to  study the influence of  an external laser field on the 
free free transition process of electron - hydrogen system in a dense and hot plasma 
environment. Such studies have direct relevance to many  real physical objects, e.g., laser 
produced plasma [7], fusion plasma confinement, high power gas lasers etc. In particular, 
the inverse bremstrahlung process is believed to play an important role in the breakdown 
and the heating process of a plasma illuminated by a laser beam [ 10 ]. The interpretation 
of the line emission from a dense high temperature plasma requires a detailed knowlege 
of spectroscpic as well as the collisional properties ( e.g., collision strength, cross 
sections etc. ) of the plasma constituents. However not much is known about the 
combined effects of plasma and laser field  on the important collision processes [7, 10]. 
When a dense plasma is irradiated with an external laser field, the electromagnetic wave 
will not propagate through the plasma in the nonrelativistic case, if the plasma frequency 
is much higher than the  frequency of the electromagnetic wave. However, still there will 



be transfer of energy from the laser to the plasma without altering the average plasma 
properties [11].  
 
         Inside a dense plasma, partial shielding by the neighbouring charged particles 
weakens the pure coulomb interaction between two charged particles at large separations, 
thereby affecting the collision cross sections. It is therefore expected that the effect of 
plasma screeining on the collision cross sections should be particularly large at low 
incident energies [ 6 ].  
  
         In most of the collisional experinents with or without the presence of laser field, the 
plasma environment is always present to some extent and it can significantly affect the 
collision process. It is therefore desirable and quite worthwhile to study the atomic 
collision processes  under the combined presence of the   plasma and the laser field. Now 
a days by virtue of  the rapid and dynamic development in the laser technology, laser 
assisted collision experiments are becoming incresingly feasible at laboratories following 
which a significant number of theoretical studies were performed for different atomic 
collision processes. Laser assisted excitation, ionisation, recombination and the free- free 
transition processes  are the basic underlying mechanisms for different highly nonlinear 
phenomena, e.g., nonsequential double or multiple ionisation (NSDI, NSMI), high 
harmonic generation (HHG) and high order above threshold ionisation (HATI) that occur 
when atomic or molecular targets are irradiated with strong and short wave length  laser 
field. The Coulomb potential of the system  is distorted by such field and as a result, the 
electron can escape from the atoms (or molecules) through tunneling. If the tunneled 
electron driven by the laser field revisits its parent atomic ion during the reverse cycle of 
the laser field, the  electron  again may either be  elastically scattered off  its parent ion 
leading to HATI peaks or it can recombine with it generating a high order harmonic 
(HHG). The tunneled electron can also reionise the residual nucleus leading to NSDI.  It 
is therefore expected that the  laser assisted  collisional experiments where the collision 
partners are under full control could  provide detailed insight into the above phenomena. 
 
          Apart from these, the laser assisted electron- atom collisions allow on the one hand 
the experimental observation of different multiphoton processes [12- 16] at relatively 
moderate laser field intensities while on the other hand it allows to measure some 
electron-atom scattering parameters which otherwise would not be accessible to 
experiments. In view of the recent availability of the tunable lasers with a wide frequency 
range, unique effects can be observed which are not present in ordinary electron-atom 
scattering. 
 
           In a recent work [17], we investigated the effect of an external laser field on the 
scattering of low energy electrons from a ground state hydrogen atoms in a gaseous 
medium. Wallbank and Holmes [15] carried out experiments on the scattering of low 
energy electrons from He atoms in the presence of a pulsed CO2  laser with the  laser 
polarization parallel to the momentum transfer and the  photon energy being 0.117 eV.  
Our  results for the H atom [17]  were found to be  in accord with  the experiment [15] 
qualitatively. 



                    The present work addresses the laser assisted free free  (FF) transition of a 
plasma embedded electron – hydrogen  ( ground state) system at very low incident 
energies in the frame work of  Debye Hückel model [18]. 
 
Theory: 
 
The free-free transition in the presence of an external laser field is given by 
 
ω(l) + e- (ki)+ H (1s) -> e-(kf) + H(1s),                                                        (1) 
 
where l is the number of photon absorbed or emitted. The processes in which l < 0 and  l 
> 0 correspond to stimulated brehmsstrahlung (emission) and inverse brehmsstrahlung 
(absorption), respectively, while l=0 corresponds to pure laser-assisted elastic ( free-free) 
scattering; ik


 and fk


 being the incident and final momenta of the projectile electron. 

The laser field is chosen to be  homogeneous, monochromatic, and linearly polarized and 
is represented by  ),sin()( 0 ξωεε += tt   where ξ  is the initial phase of the laser field, the 
corresponding vector potential in the dipole approximation  is )cos()( 0 ξω += tAtA


 with 

ωε /00


cA = , and ξ  is chosen equal to zero in the present work. ε̂ correspond to laser 
polarization, parallel to the incident electron momentum. 
.  
The total Hamiltonian of the system in the laser field is given by 
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where  DV  represents the Debye-Hückel potential [ 18] of the form: 
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where 1r

  and 2r
  are the position vectors of the incident electron and the bound electron of 

the target hydrogen atom, r12 is the relative distance. The parameter μ is called the Debye 

screening parameter and is given by 5.0
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T is the temperature of the plasma. The Debye length is given by 1/μ.  We use Rydberg 
units throughout our calculations. Therefore, μ has the units of 1/a0, where a0 is the Bohr 
radius of the hydrogen atom. For μ=0.1, we find n/T=9.04x105.  At room temperature, 
T=300K, we find n=2.712x108 / cm3. This is a very reasonable density at which most 
experiments could be carried out, because there is never a perfect vacuum. We have 
carried out calculations for μ=0.005 to 0.12 which is a very reasonable choice. 
The energy of the laser field is ω= 0.0043 a.u. ( 1 a.u. being 9105×  V/cm) , i.e., we are 
dealing with soft photons and the strength of the laser field is ∈0 =0.01a.u ( 1a.u. being 

1610  W/cm2 ). The incident energy ki
2 of the electron ranges from 0.01 to 0.64 Ry or from 

0.136 to 8.707 eV in our calculation. This incident energy is very much below the ‘n’=2 
threshold of the hydrogen atom.  



 
The energy conservation relation  for this FF process is given by 
 
kf

2 = ki
2+2lω,     l=0, ±1, ±2, …                                                                   (4) 

 
The transition matrix element for the laser-assisted process (2) is given by [17] : 
 

∫ >Ψ<−= + .|| iffif VdtiT ψ                                                                              (5) 

where the perturbation 
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The projectile electron is considered to be dressed by the laser field in a nonperturbative 
manner by choosing the Volkov solutions [19] in both the initial and final channels. 
 
The final channel asymptotic wave function fψ  in Eq. (5) satisfies the following 
Schrödinger equation: 
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In the present work, we have neglected the laser-target interactions as compared to the 
dominant projectile-target interactions at very low incident energies. Thus the final 
channel wave function fψ  is chosen as 
 

fkf f
φχψ =                                                                                                      (8) 

 
The final state wave function  fφ  is the same as the initial state wave function 0φ  given 
in Eq. (24) and calculated in the presence of the Debye-Hückel [ 18 ] potential.  The time 
dependent Schrödinger equation describing the electron in the laser field in the Coulomb 
gauge is given by 
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The superscript ‘C’ indicates the Coulomb gauge and  
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In the above equation q=-e is the charge on the projectile. The solution of Eq. (9) is given 
by the Volkov wavefunction [19- 21] 
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where 2kEk =  is the free energy and  
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Now, we use the generating function of the Bessel functions [20, 21]: 
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Using the above generating function and in view of the relation 
 

)()1()( zJzJ m
m

m −=− ,                                                                                    (14) 
Eq(11) can be recast as ( the superscript being omitted) 
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The full scattering wave function +Ψi  in the initial channel satisfies the three-body 
Schrödinger equation, obeying the incoming wave boundary condition: 
 

0)( =Ψ− +
iEH .                                                                                             (16) 

 
 Now the spatial part ( ),( 21 rrs


Ψ of the full scattering wave function +Ψi  is obtained 

numerically in the framework of the partial wave expansion by solving the initial channel  
Schrödinger equation, incorporating the electron exchange  [22]. Finally, ifT  reduces to  
 

∑ +−
−

= IqJlEEiT lkkif if
).()(

)2( 02/1 αωδ
π

 ,                                                      (17) 

 
where fi kkq


−=  is the momentum transfer and I is the space part of the transfer matrix 

element and is given by 
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In the weak field limit (i.e., neglecting the target dressing effect), the laser-assisted 
differential cross section (DCS) for the elastic scattering, for l photons, can be related to 
the field free (FF) differential cross section by the relation [17, 19 -21] 



 
[dσl(ki, kf(l))/dΩ]laser = (kf(l)/ki) Jl

2(q.α0) [dσl/dΩ]FF,                                                 (19) 
 
where [dσl/dΩ]FF is the field-free elastic cross section, Jl are the Bessel functions of 
integer order l, if kkq


−= is the momentum transfer, ki, kf are the initial and final 

momenta of the electron.  
 
The above relation, given in Eq. (19) is called the so called Kroll-Watson [ 19] 
Approximation (KWA). In order to calculate the field-free [FF] elastic differential and 
total cross sections, we carry out the calculation of phase shifts in the exchange 
approximation [ 22 ]. 
 
The ground state wave function  of the target H atom gets dressed  under the Debye-
Hückel  [18] potential  and is given by 
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Since the lowest term does not contain r, the summation index ranges from 0 to N=14, 
i.e., we have 15 terms in the expansion. The corresponding ground state energy is 
calculated variationally by using  
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We find that the energy is not sensitive to the variation of the nonlinear parameter a in 
the expansion given in Eq. (20) and as such we  kept it fixed at 1.0.  The ground state 
energies for various values of the Debye parameter are given in Table I. 
 
Table I. Ground state energies of the hydrogen atom for various values of μ with 15 terms 
in the expansion of the wave function (20). 

             Debye parameter μ                       E(Ry)   
                0.0     -1.00   
                0.005     -9.90[-1]   
                0.01     -9.80[-1]   
                0.015     -9.70[-1]   
                0.02     -9.61[-1]   
                0.04     -9.22[-1]   
                0.08     -8.49[-1]   
                0.12     -7.80[-1]   

 
As μ increases, the ground state energy moves towards the continuum. Finally, for large 
values of μ the atom becomes unbound. 
 



The wave function ( ),( 21 rrs


Ψ for the scattering in the exchange approximation [22] is 
given by  
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The upper sign (+) refers to singlet states and the lower sign (-) to triplet states. The 
equation for the scattering function u(r) is obtained from  
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The Hamiltonian in the above equation is given by 
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Carrying out the integration leads to the scattering equation for u(r), by letting r1 =r, we 
obtain  
 

,0)]}()()[(
)12(

2)({)(])(2)1([ 1
0100

2
322

2

=+
+

−±+−+
+

− +
−

− rGerrF
r

er
l

FrrrukrVe
r
Z

r
ll

dr
d rl

l

r

l
r µ

µ
µ φδφ

 
                                                                                                                    (26) 
where 
 

)()(
0

1 xuxBdxF ∫=
α

                                                                                           (27) 

 

∫ +=
r

xl xuxexdxrF
0

0
)1( )()()( φµ                                                                            (28) 

 

∫
−

=
α µ

φ
r

l

x

xux
x

erG )()()( 0                                                                                    (29) 

 
)()()(2]2)1([)( 0

22
0

12 xxakxZeajxxjjCxB xj

j

j
j φφµ +++−−= −−−∑                      (30) 

 

)],()},()!({[)( 13 prweeqrve
q

ij
r

eCCrV prrqr
ij

r

i
i

j
j

−−
++

−

+−
+

= ∑∑ µ
µ

,                            (31) 

 
 



where, q=2a-μ and p=2a+μ. 
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In Eqs. (26 - 27), the minimum value of ‘s’=0.  Because of the parameter μ, the resulting 
integro-differential equation is quite different from the well known exchange 
approximation equation [22]. However, when we put μ=0, a=Z=1 and N=1 in Eq. (30), 
we recover the equation given in [22] for the exchange approximation.  
 
      We have solved the resulting equation for l=L=0 to 7, numerically by the noniterative 
method. The phase shifts obtained have the variational lower bounds and they are 
calculated from the function u(r), 
  

∞→+−= rforLkrAru )
2
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          A better approximation for higher partial waves would have been the use of the 
Method of Polarized Orbitals [23]. Since the ground state wave function is rather 
complicated, the polarized orbital function psu →1  [23] has to be obtained numerically for 
each partial wave L. This would have made the problem quite cumbersome to solve. 
Moreover, the long-range polarization potential arises from the expansion of  1/r12. 
Because of the nonlinear parameter μ in the term exp[-μr12]/r12, this term will not 
contribute when r1 or r2  goes to infinity in the expansion of 1/r12. This shows that there 
will not be any long-range potential in this problem. 
         Similarly, the calculations  that include correlations [24] would be too much 
involved. At present, our main interest is to see the behavior of the cross sections in the 
combined effect of the laser field and the Debye-Hückel potential. 
 
        The phase shifts, for singlet and triplets states have been calculated for the partial 
waves [L=0 to7] for the values of μ given in Table I. The results in the Table are accurate 
up to the figures quoted. The field free (FF) elastic differential cross section (DCS) is 
given by [17] : 
 
[dσl/dΩ]FF = (1/ki

2)│∑(2L+1)exp[iδL]sin (δL)PL(cosθ)│2,                      (33) 
 
where ϑ is the scattering angle between r and the Z axis. 



 
Results & Discussions: 
           We have computed the laser assisted (LA) Free – Free transitions  ( both 
differential and total cross sections) of a H atom embedded in a dense plasma under the 
Debye Hückel potential [18]. Tables II and III demonstrate the present LA total free – 
free transition cross sections (TCS) for the incident k=0.1, 0.2, 0.3, 0.5 and 0.8 in both the 
triplet and singlet states for various values of the parameter μ along with the 
corresponding  field-free (FF) cross sections. We also provide the results obtained by us 
[17] in the absence of the Debye-Hückel potential. We note that the  cross sections 
change significantly when the irradiated system is embedded in a Debye plasma. As μ 
increases from the zero value , the cross sections increase remarkably in all the cases (l=-
1, 0, 1) up to μ=0.02 while  beyond that they start to decrease. In all the cases the cross 
sections are very much suppressed compared to the FF values.  
 
Table II. Comparison of the triplet cross sections with FF cross sections for electron-
hydrogen scattering for various values of μ. 
 
Parameter 
μ                           

      K       l=-1        l=0        l=1    Field Free 

     0.00a      0.1  1.14[-1]     8.21[-1]     1.15    5.15[+1] 
      0.2  1.72[-1]     3.51[-1]     4.32[-1]    5.52[+1] 
      0.3  1.35[-1]     2.40[-1]     2.60[-1]    5.49[+1] 
      0.5  1.55[-1]     3.29[-1]     3.19[-1]    4.87[+1]                  
      0.8  1.51[-1]     3.42[-1]     3.24[-1]    3.07[+1] 
      
     0.00      0.1  1.55[-1]     1.41     1.77    6.79[+1] 
      0.2  2.36[-1]     6.35[-1]     7.26[-1]    6.28[+1] 
      0.3  1.71[-1]     3.50[-1]     3.79[-1]    5.64[+1] 
      0.5  1.09[-1]     1.99[-1]     2.00[-1]    4.30[+1] 
      0.8  8.14[-2]     1.58[-1]     1.54[-1]    2.55[+1] 
      
    0.005      0.1  4.75    4.77[+2]    2.75[+1]    1.14[+3] 
      0.2  2.55    4.37[+1]    8.65    2.13[+2] 
      0.3  1.40     9.57    4.42    9.81[+1] 
      0.5  3.06[-1]      1.08    7.81[-1]    4.81[+1] 
      0.8  6.71[-2]     1.31[-1]    1.22[-1]    2.50[+1] 
      
     0.01      0.1  8.51    8.45[+2]    5.29[+1]        2.08[+3] 
      0.2  5.31    9.35[+1]    1.85[+1]    3.92[+2] 
      0.3  3.03    2.18[+1]     9.77    1.54[+2] 
      0.5  6.69[-1]    2.66     1.86    5.79[+1] 
      0.8  9.96[-2]    2.68[-1]     2.29[-1]    2.59[+1] 
      
   0.015      0.1  9.82     9.37[+2]     6.84[+1]    2.48[+3] 
      0.2  7.32     1.27[+2]     2.65[+1]    5.22[+2] 



      0.3  4.42     3.19[+1]     1.45[+1]    2.03[+2] 
                            0.5  1.04     4.28     2.96    6.80[+1] 
      0.8  1.48[-1]     4.58[-1]     3.84[-1]    2.74[+1] 
      
    0.02      0.1  9.86    8.89[+2]    7.84[+1]    2.58[+3] 
      0.2  8.63    1.45[+2]    3.25[+1]    6.08[+2] 
      0.3  5.49    3.96[+1]    1.82[+1]    2.42[+2] 
      0.5  1.39    5.76    4.00     7.74[+1] 
      0.8  2.02[-1]    6.66[-1]    5.54[-1]    2.90[+1] 
      
    0.04      0.1  7.33     4.89[+2]    9.23[+1]    2.17[+3] 
      0.2  9.88    1.44[+2]    4.28[+1]    7.11[+2] 
      0.3  7.46      5.15[+1]     2.59[+1]    3.23[+2] 
      0.5  2.39    9.80    7.00    1.06[+2] 
      0.8  4.16[-1]    1.46    1.22    3.53[+1] 
      
   0.08             0.1  3.99     1.51[+2]    7.13[+1]    1.33[+3]                        
      0.2  7.36    7.89[+1]    3.72[+1]    6.04[+2] 
      0.3  6.56    4.02[+1]    2.41[+1]                  3.28[+2] 
      0.5  3.03    1.20[+1]    8.89    1.28[+2] 
      0.8  7.10[-1]    2.49    2.10    4.39[+1] 
      
    0.12      0.1  2.52    6.59[+1]    4.69[+1]    8.96[+2] 
      0.2  5.10    4.22[+1]    2.69[+1]    4.82[+2] 
      0.3  4.98    2.72[+1]    1.87[+1]    2.95[+2] 
      0.5  2.82    1.07[+1]    8.23    1.30[+2] 
      0.8  1.71    5.50    4.80    1.18[+2] 

a. These the results are obtained  without the Debye potential and using very 
accurate phase shifts, which include the contribution of short and long range 
correlations. 

 
Table III. Comparison of the singlet cross sections with FF cross sections for electron-
hydrogen scattering for various values of μ. 
 
Parameter             
μ 

  K    L=-1        l=0      L=1    Field 
Free 

     0.00a  0.1   8.81[-1]    7.85     1.01[+1]   3.87[+2] 
  0.2   9.68[-1]    2.90     3.10   2.43[+2] 
  0.3   5.03[-1]    1.13     1.21   1.38[+2] 
  0.5   1.30[-1]    2.59[-1]     2.55[-1]   4.15[+1] 
  0.8   3.35[-2]    7.79[-2]     7.25[-2]   1.04[+1] 
      
     0.00  0.1   1.33     1.26[+1]     1.56[+1]    5.79[+2] 
  0.2   1.18    3.43     3.88    2.87[+2] 
  0.3          5.12[-1]    1.15     1.24    1.39[+2] 



  0.5   9.48[-2]    1.69[-1]     1.70[-1]    3.77[+1] 
  0.8   9.29[-3]    1.40[-2]     1.39[-2]         8.02 
      
   0.005  0.1   6.21    5.11[+2]     4.36[+1]   1.73[+3] 
  0.2   3.30   4.35[+1]     1.09[+1]   4.26[+2] 
  0.3   1.45    8.50     4.11   1.72[+2] 
  0.5   2.68[-1]    9.57[-1]     6.74[-1]    4.26[+1] 
  0.8   4.38[-2]    1.43[-1]     1.20[-1]   9.18 
      
     0.01  0.1   9.88   8.62[+2]     7.15[+1]    2.65[+3] 
  0.2   5.78   8.92[+1]     1.94[+1]   5.88[+2] 
  0.3   2.84   1.92[+1]     8.46    2.19[+2] 
  0.5   6.09[-1]   2.47     1.68   5.21[+1] 
  0.8   1.12[-1]   3.93[-1]     3.29[-1]   1.15[+1] 
      
    0.015  0.1   1.11[+1]   9.39[+2]     8.74[+1]   3.01[+3] 
  0.2   7.51   1.19[+2]     2.60[+1]   7.01[+2] 
  0.3   4.02   2.81[+1]     1.23[+1]   2.60[+2] 
  0.5   9.61[-1]    4.28     2.72   6.19[+1] 
  0.8   1.89[-1]   6.72[-1]     5.62[-1]   1.40[+1] 
      
      0.02  0.1   1.10[+1]   8.79[+2]     9.62[+1]   3.08[+3]     
  0.2   8.56   1.34[+2]     3.06[+1]   7.71[+2] 
  0.3     4.91   3.47[+1]     1.53[+1]   2.91[+2] 
  0.5     1.29   5.41     3.69   7.09[+1] 
  0.8     2.66[-1]   9.52[-1]     7.97[-1]   1.66[+1] 
      
    0.04  0.1    8.10   4.54[+2]     9.95[+1]   2.16[+3] 
  0.2    8.94   1.25[+2]     3.59[+1]   8.12[+2] 
  0.3    6.36     4.40[+1]      2.10[+1]   3.45[+2] 
  0.5    2.21   9.27     6.46   9.69[+1] 
  0.8    5.48[-1]   1.95     1.64   2.60[+1] 
      
     0.08  0.1    1.85   9.84[+1]     3.00[+1]   5.88[+2] 
  0.2    5.23   5.71[+1]     2.33[+1]   5.81[+2] 
  0.3    5.14   3.27[+1]      1.81[+1]   3.10[+2] 
  0.5    2.73   1.11[+1]       8.06   1.13[+2] 
  0.8    8.99[-1]   3.13    2.67   3.83[+1] 
      
     0.12  0.1    1.77   5.55[+1]    3.58[+1]                                  5.96[+2] 
  0.2    2.52   4.23[+1]   1.23[+1]   3.02[+2] 
  0.3    3.38   1.97[+1]   1.24[+1]   2.39[+2] 
  0.5    2.48   9.70   7.31   1.09[+2] 
  0.8    1.03    3.52   3.02     4.39[+1] 



a. These the results are obtained  without the Debye potential and using very accurate 
phase shifts, which include the contribution of short and long range correlations. 

 
 
The overall accuracy of the reults in Tables II & III  is within 10%. We note from the 
Tables that as as μ increases from zero, the cross sections initially increase upto a certain 
value of  μ and beyond that ( ~ μ = 0.02 ) they decrease.   The laser assisted cross 
sections are suppressed as compared to the FF ones and the suppression is more for the 
triplet cross sections than for the singlet ones. 

 
Figures 1-   exhibit the effect of  the laser field on the field free plasma embedded cross 
sections . Fig. 1 displays the LA  singlet TCS for the cases of single-photon emission (l=-
1), no photon transfer (l= 0) and  single-photon absorption (l=1) with an incident 
momentum ki=0.1. As may be noted, the cross section has a prominent peak around 
μ=0.02 , the peak value being dependent on the value of l. Cross sections decrease very 
rapidly as μ increases up to a value ~ 0.8 beyond which the TCS becomes almost 
independent of μ. For low incident energies (ki = 0.1), the peak of the TCS occurs at a 
much lower value of μ, i.e., for a larger value of the Debye length indicating  that the 
projectile elctron is moving in an almost pure coulombic potential. 
 
 
 
 



Fig.1. (color online only)Total cross sections (TCS) vs µ  in atomic unit ( a.u.) for 
singlet, k=0.1 . The upper curve is for (l=0), the middle curve is for  single photon 
absorption (l=1) and the lowest one is for emission  
(l=-1). 
 
 



 

 
Fig.2. (color online only)Total cross secions (TCS) vs µ  in a.u. for triplet, k=0.1. The 
upper curve is for (l=0), the middle curve is for single photon absorption (l=1), and 
the lowest one is for single photon emission (l=-1). 
 
 



 
Fig. 2 reveals the same behavior as is observed in the triplet case for ki=0.5. 
 

 
Fig.3. (color online only) TCS vs µ  in a.u. for singlet,  k=0.5. The upper curve is for 
l=0,the middle curve is for l=1 and the lower curve is for l=-1. 
 



 
 
 Fig. 3 reveals the effect of the laser field and the Debye-Hückel potential on the TCS for 
a single-photon emission (l=-1), no photon transfer (0) and a single photon absorption (1) 
with an incident ki=0.5 in the singlet state. The  cross section (TCS) is found to rise 
gradually and have peaks at around μ = ~ 0.08 beyond which it falls off very slowly and 
become almost constant for higher valus of  μ. The cross sections are smaller in 
magnitude as compared to those for ki=0.1 as expected. The peak value of the TCS occurs 
at a  much higher value of μ  ( compare Figs. 1 & 3) i.e., at a lower Debye length for 
higher incident energy indicating that the Debye screening increases with increasing 
incident energy since in this case the incident electron moves closer to the target. 
 
  
 
 



Fig.4  (color online only)TCS  vs µ  for triplet, k=0.5. The upper curve is for (l=0), 
the middle curve is for   l=1 and the lowest one is for l=-1. 
 
Fig. 4 exhibits  similar  behavior for the triplet state for ki=0.5 as noted for the singlet one 
( vide Fig. 3). 
 



  
      
 
Figures   5a &5b: (color online only)Total singlet (5a) and triplet (5b) cross 
sections(TCS) in atomic unit (a.u.) against momentum k  in ( a.u.). The upper curve 
is  for no photon exchange ( l=0) , middle curve is for single photon absorption ( 
l=+1) and the lowest is for the  emission ( l=-1) .  
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       Figures 5 ( a & b) exhibit a comparative study of the different laser assisted TCS 
( 1,0 ±=l ) against the incident energy for both the singlet ( Fig. 5a) and triplet states ( 
Fig.5b) at 04.0=µ . As may be noted from the Tables ( I & II) as well as from Figs 6, the 
laser assisted TCS ( for 1,0 ±=l  ) are highly suppressed w.r.t. the FF ( 5 – 6 times) for all 
values of  µ , the suppression being increased with increasing incident energy for higher 
µ  ( e.g., µ =0.04) while for lower µ , the reverse is true , i.e., the degree of suppression 



w.r.t. the FF decreases with  increasing incident energy. On the contrary, the difference 
between the single photon absorption or emission )1( ±=l and the no photon exchange 
( 0=l  )TCS decreases with increasing incident energy. The no photon exchange cross 
sections  ( 0=l ) dominates throughout the energy range over the other two ( 1±=l ) for all 
values of µ  except for µ 0=  where the single photon absorption (l=+1)  dominates. 
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Fig.6 (color online only)  Singlet and Triplet DCS for the parameters ki =0.5, 
µ =0.02 and l=+1 along with the correspondind field free (FF) DCS. 
 
      Finally , we present some differential cross sections (DCS) for both the singlet and 
triplet along with their corresponding field free (FF)  results for 5.0=ik  and 02.0=µ . 
Strong modification is noted in the laser assisted DCS  as compared to the FF  both 
quantitatively  ( suppression ) and qualitatively for both the states with singlet all through 
lying slightly above the triplet. The oscillations noted in the LA DCS could be attributed 
to the oscillations of the Bessel functions ocurring in the expression of DCS ( vide 
eqn.(19)). 
 
Conclusions: 
 
1.  The presence of the Debye-Hückel potential  (μ >0) enhances the cross sections in all 
cases (l=-1, 0, and 1) and for all values of the incident momentum. Apart from the 
qualitative modifications, the major quantitative effect of the external laser field is to 
suppress the field free cross sections. A significant difference is noted for the singlet and 
triplet cross sections. The suppression is much more in the triplet states.   
 



2. Total cross sections decrease with the increase of the incident electron momentum and 
also with the increase of the Debye parameter as expected. 
 
3.  The DCS exhibit a number of oscillations at higher scattering angles that could be 
attributed  to the oscillations in the Bessel function.  
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