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Abstract

This work provides a comparison of satellite retrievals of Saharan desert dust aerosol
optical depth (AOD) during a strong dust event through March 2006. In this event, a
large dust plume was transported over desert, vegetated, and ocean surfaces. The
aim is to identify and understand the differences between current algorithms, and5

hence improve future retrieval algorithms. The satellite instruments considered are
AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting as-
pect is that the different algorithms make use of different instrument characteristics to
obtain retrievals over bright surfaces. These include multi-angle approaches (MISR,
AATSR), polarisation measurements (POLDER), single-view approaches using solar10

wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS).
Differences between instruments, together with the comparison of different retrieval al-
gorithms applied to measurements from the same instrument, provide a unique insight
into the performance and characteristics of the various techniques employed. As well
as the intercomparison between different satellite products, the AODs have also been15

compared to co-located AERONET data. Despite the fact that the agreement between
satellite and AERONET AODs is reasonably good for all of the datasets, there are
significant differences between them when compared to each other, especially over
land. These differences are partially due to differences in the algorithms, such as as-
sumptions about aerosol model and surface properties. However, in this comparison of20

spatially and temporally averaged data, at least as significant as these differences are
sampling issues related to the actual footprint of each instrument on the heterogeneous
aerosol field, cloud identification and the quality control flags of each dataset.

1 Introduction

Desert dust is one of the most abundant and important aerosols in the atmosphere.25

Dust grain size and composition make it radiatively active over a wide spectral range
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(from the ultraviolet to the thermal infrared) and so airborne dust has a significant
direct radiative forcing on climate (IPCC 2007 – ar4 2.4.1). Changes in land use can
result in an anthropogenic influence on the atmospheric burden of desert dust. Dust
also has indirect radiative effects by acting as cloud condensation nuclei (CCN) and
modifying precipitation. Iron transported by desert dust and deposited into the sea5

affects phytoplankton (Jickells et al., 2005).
Satellites can provide global measurements of desert dust and have particular im-

portance in remote areas where there is a lack of in situ measurements. Desert dust
sources are often in just such poorly instrumented remote areas. Satellite aerosol re-
trievals have improved considerably in the last decade and the number of related pub-10

lications has correspondingly increased. However intercomparison exercises (Myhre
et al., 2005) have revealed that discrepancies between satellite measurements are
particularly large during events of heavy aerosol loading. In the past, aerosol re-
trievals for satellite radiometers have typically made use of visible and near-infrared
measurements, the interpretation of which becomes difficult over bright surfaces such15

as deserts. To overcome these difficulties more recent algorithms make use of addi-
tional information available from certain instruments, for example multi-angle observa-
tions, shorter (ultraviolet) wavelengths, thermal infrared wavelengths, and polarization.
All algorithms must also make prior assumptions about aerosol composition and the
properties of the underlying surfaces, as the retrieval of aerosol properties is an inher-20

ently under-constrained optimisation problem. Instrumental observing capability and
algorithm implementation (such as the use and formulation of prior information) give
retrievals that are sensitive to different aspects of the dust aerosol loading. Using mea-
surements from the same sensor, large variations in AOD can be found between differ-
ent algorithms (Kokhanovsky et al., 2007) even in the idealised case of a non-reflecting25

surface (Kokhanovsky et al., 2010), or when only the assumed aerosol microphysical
properties in a retrieval algorithm are changed (e.g. Bulgin et al., 2011).

In this paper, we report results from the Desert dust Retrieval Intercomparison (DRI)
project, which performed a comparison of retrievals for a Saharan desert dust episode
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in March, 2006 using data from a wide range of state-of-the-art schemes. This com-
parison reveals the dependence of the results on approximations made by retrieval
algorithms, the accuracy of the aerosol model assumed, and the importance of good
quality control. The aim of the study was to highlight and understand differences be-
tween the schemes in order to recognize the strengths of particular schemes and iden-5

tify areas for improvement. The comparisons were performed separately over ocean
(where satellite retrievals are less affected by problems in modelling the surface con-
tribution to the top of atmosphere signal) and over land (where the retrieval problem is
more challenging). The project also compiled a database of retrieval results which can
be used in future work to test algorithm improvements.10

2 Datasets

Most of the instrument radiance measurements considered here gave rise to more
than a single estimate of AOD through the application of different retrieval algo-
rithms. A pixel-by-pixel analysis of different algorithms applied to the same instrument
or datasets from collocated pixels from different instruments, as MODIS and MISR15

(Mishchenko et al., 2010; Kahn et al., 2011), could lead to interesting results, but we
leave this to future work. Here the comparison of satellite datasets is limited to the
spatially and temporally averaged data.

The different spatial and temporal sampling available from different satellite instru-
ments means that a direct comparison at the individual pixel (field-of-view) level is20

generally not possible. These differences in sampling can give differences in the re-
trieved AOD, particularly when the aerosol loading is spatially and/or temporally het-
erogeneous, or where cloud fields move between the overpasses of different sensors
such that the cloud-free area imaged is not the same (e.g. Levy et al., 2009; Sayer et
al., 2010b). The quality control in each individual retrieval algorithm may be different,25

so even retrievals from the same instrument will not necessarily have the same cover-
age. To minimise the effects of sampling differences on the intercomparison, data are
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aggregated to daily temporal resolution and a relatively fine spatial grid. To facilitate
comparisons each data provider has given two sets of results:

1. A daily AOD field formed by averaging individual retrievals onto a common spa-
tial grid, namely a half degree regularly spaced grid in latitude and longitude. The
mean AOD in each grid cell is provided, along with the standard deviation of all in-5

dividual retrieved AOD values in the cell and the number of these samples. These
aggregated daily fields are directly compared (neglecting the fact that satellites
may sample at different times of day). Most algorithms provide AOD at 550 nm
with the exception of AIRS (900 cm−1) and OMI-NASA (440 nm).

2. For comparison with ground-based direct-Sun observations from the Aerosol10

Robotic Network (AERONET; Holben et al., 1998), we use the mean and standard
deviation of all individual retrievals within a radius of 50 km of selected AERONET
sites, together with the number of individual retrievals and the mean observation
time of those samples.

In the following text the term “dataset” is used to refer to the AOD produced by the appli-15

cation of a named retrieval algorithm to measurements by a specific instrument. Com-
parisons are restricted to a region enclosed by latitudes 0 and 45◦ N and longitudes
50◦ W and 50◦ E. Table 1 summarises the datasets included and a brief description of
each dataset is provided below, organised by instrument.

The differences in using desert dust optical properties computed from spherical or20

non-spherical model can lead to significant effects (Mishchenko et al., 2003). In this
comparison, the AATSR-ORAC, MISR, MODIS, POLDER-ocean, OMI-KNMI datasets
include non-spherical optical models, the other datasets use only spherical models.
This can lead to differences in retrieved AOD, especially for the datasets that make
use of ultraviolet and visible wavelengths. Moreover if dust is modeled assuming non-25

spherical particles, then additional decisions need to be made as to the specific dis-
tribution of particle shape(s) to use. These differences, which can be significant, will
also affect the calculated phase function and so retrieved AOD (e.g. Kalashnikova and
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Sokolik, 2002; Kalashnikova et al., 2005). These effects are not analyzed in the present
paper (due to the complexity added by multi-angle retrievals), but for future research
we suggest that an analysis of AOD differences between datasets as a function of
scattering angle could help isolate phase function effects.

2.1 AATSR5

2.1.1 Globaerosol

The GlobAEROSOL project (http://www.atm.ox.ac.uk/project/Globaerosol/) was car-
ried out as part of the European Space Agency’s Data User Element programme.
All the products are on a common 10 km sinusoidal grid and together provide almost
continuous coverage for 1995–2007. The instruments used by the project are the sec-10

ond Along Track Scanning Radiometer (ATSR-2), the Advanced ATSR (AATSR), the
Medium Resolution Imaging Spectrometer (MERIS), and the Spinning Enhanced Visi-
ble Infrared Imager (SEVIRI).

The DRI intercomparison has made use of the AATSR GlobAEROSOL product de-
rived using the Oxford-Rutherford Appleton Laboratory (RAL) Retrieval of Aerosol and15

Cloud (ORAC) optimal estimation scheme. A full description of the retrieval is given by
Thomas et al. (2009). ORAC makes use of the ATSR nadir and forward view channels
centred at 0.55, 0.67, 0.87 and 1.6 µm. The forward model includes a bidirectional
reflection distribution function (BRDF) description of the surface reflectance. By con-
straining the relative strengths of the direct, hemispherical and bi-hemispherical sur-20

face reflectance the aerosol optical depth, effective radius and bi-hemispherical surface
albedo in each channel are retrieved. The a priori surface reflectance is determined by
the MODIS BRDF product (MCD43B1 Collection 5.0) over land (Schaaf et al., 2002)
and by an ocean surface reflectance model (Sayer et al., 2010a) over the ocean.

Retrievals are performed for each of five predefined aerosol types: desert dust, mar-25

itime clean, continental clean, urban (all using component optical properties from the
Optical Properties of Aerosols and Clouds (OPAC) database of Hess et al., 1998) and
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biomass-burning (Dubovik, 2006). From these five results a best match is selected
based on the quality of the fit to the measurements and a priori constraints, providing
a crude speciation of the aerosol.

2.1.2 ORAC

The AATSR-ORAC dataset represents an updated version of the aerosol retrieval al-5

gorithm used in AATSR-GlobAerosol. Three major aspects of the algorithm have been
improved, described in detail by Lean (2009) and Sayer et al. (2012):

– Improved surface reflectance treatment. The error budget of the MODIS BRDF
products used to generate the a priori surface albedo has been improved, and
a correction algorithm applied to account for the differences between the visible10

channel spectral response functions of the MODIS and AATSR instruments.

– Implementation of aerosol type flags (volcanic ash, biomass burning over land,
desert dust over sea) to identify aerosol pixels misclassified as cloudy by the
supplied cloud flag.

– Development of a new aerosol microphysical model for desert dust. This uses15

the same refractive indices (derived from OPAC components) as in the AATSR-
GlobAerosol retrieval, but treats the particles as spheroids using T-matrix code
(Mishchenko et al., 1997, 1998) rather than spheres. A modified lognormal distri-
bution of spheroid aspect ratios (the ratio between major and minor axis length)
as given by Sect. 3.4 of Kandler (2007) is used with equal numbers of oblate and20

prolate spheroids.

2.1.3 Swansea

The Swansea University retrieval algorithm has been designed to retrieve the aerosol
optical thickness and type, and surface reflectance over both land and ocean. The
treatment of atmospheric radiative transfer is by look-up table (LUT) using the scalar25
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version of 6S code (Vermote et al., 1997; Grey et al., 2006a). Five aerosol models
are represented: two coarse mode (oceanic, desert) and three fine mode (biomass
burning, continental and urban). The optimum value of AOD and aerosol model is
selected by iterative inversion based on fit to a model of surface reflectance. Over
ocean the algorithm uses the low spectral reflectivity at near and mid infra-red chan-5

nels to constrain aerosol retrieval (Grey et al., 2006b; Bevan et al., 2011). Over land,
the algorithm uses the AATSR dual-view capability to estimate aerosol without prior
assumptions of land surface spectral properties, based on inversion of a simple pa-
rameterized model of surface anisotropy (North et al., 1999; North, 2002; Davies et
al., 2010). This model defines spectral variation of reflectance anisotropy accounting10

for variation in diffuse light from the atmosphere and multiple scattering at the surface.
Cloud clearing is based on instrument flags enhanced by the cloud detection system
developed by Plummer (2008).

The retrieval procedure was implemented within ESA’s Grid Processing on De-
mand (GPOD) high-performance computing facility for global retrievals of AOD and bi-15

directional reflectance from ATSR-2 and AATSR, at 10 km resolution, and these data
are used in the current study. Global validation with AERONET and other satellite
sensors was presented by Grey (2006b) and Bevan et al. (2011). Bevan et al. (2009)
performed validation of GPOD ATSR-2 and explored the impact of atmospheric aerosol
from biomass burning in the Amazon region over the full 13-yr ATSR-2/AATSR dataset.20

Further details on the algorithm are given in Grey and North (2009).

2.2 AIRS

2.2.1 JCET

Operational since September 2002, the Atmospheric Infrared Sounder (AIRS) instru-
ment (Aumann et al., 2003) on NASA’s Aqua satellite provides data for temperature25

and humidity profiles, used in numerical weather prediction. AIRS has 2378 channels,
covering the spectral range 649–1136, 1217–1613, 2181–2665 cm−1. Each cross track
swath consists of 90 pixels, with a footprint of 15 km at nadir.
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Upwelling radiances in the 8–12 µm thermal infrared (TIR) atmospheric window are
measured with a large number of high-resolution, low noise channels, making it pos-
sible to detect silicate based aerosols (De Souza-Machado et al., 2006, 2010) day or
night, over ocean or land. A dust detection algorithm has been developed using bright-
ness temperature differences (BTDs) for a set of 5 AIRS channels in the TIR region.5

The algorithm is based on simulations of dust-contaminated radiances for numerous
atmospheric profiles over ocean using dust refractive indices from Volz (1973). This
flag was designed to detect dust over tropical and mid latitude oceans (which have no
cloud cover over the dust), and can be modified to work over land surfaces.

The retrieval uses a modified version of the AIRS Radiative Transfer Algorithm (AIRS-10

RTA) which computes radiative transfer through a dusty atmosphere (Chou et al.,
1999). The AIRS-RTA assumes a plane parallel atmosphere divided into 100 layers,
with the dust profile occupying one or more consecutive pressure layers.

The algorithm assumes knowledge of the effective particle size and dust top/bottom
height. Here an effective particle diameter of 4 µm for a lognormal distribution is15

adopted. The dust height comes from GOCART climatology (Ginoux et al., 2001).
Given this, a linearized Newton-Raphson method fits for the column dust loading Γ (in
g m2) to minimize a χ2 least square fit of brightness temperatures (BTs) in the window
regions. The dust loading is related to the TIR dust AOD τ by

τ(v)=σdustmodel(v,rmode)Γ (1)20

Here σdustmodel(v,rmode) is the mass extinction efficiency in m2 g−1. It is important
to note that the retrieved TIR AOD depends critically on the assumed particle height.
Comparisons show that when the heights are correct, AIRS AODs have a very high
correlation against MODIS and POLDER AODs, especially over the ocean (De Souza-
Machado et al., 2010). This correlation drops noticeably when the heights are incorrect.25
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2.3 OMI

2.3.1 NASA-GSFC

The first step in the OMAERUV algorithm is the calculation of the UV Aerosol Index
(UVAI) as described in Torres et al. (2007). The information content of the OMI UVAI is
turned into quantitative estimates of aerosol extinction optical depth and single scatter-5

ing albedo at 388 nm by application of an inversion algorithm to OMI near-UV observa-
tions at 354 and 388 nm (Torres et al., 2007). These aerosol parameters are derived
by an inversion algorithm that uses pre-calculated reflectances for a set of assumed
aerosol models. A climatological data-set of near-UV surface albedo derived from
long-term TOMS (Total Ozone Mapping Spectrometer) observations is used to charac-10

terize surface reflective properties. Three major aerosol types are considered: desert
dust, carbonaceous aerosols associated with biomass burning, and weakly absorbing
sulfate-based aerosols. The selection of an aerosol type makes use of a combination
of spectral and geographic considerations (Torres et al., 2007). The aerosol models
particle size distributions were derived from long term AERONET statistics (Torres et15

al., 2007).
Since the retrieval procedure is sensitive to aerosol vertical distribution, the aerosol

layer height is assumed based on aerosol type and geographic location. Carbonaceous
aerosol layers between within 30◦ of the Equator are assumed to have maximum con-
centration at 3 km above ground level, whereas mid and high-latitude (pole wards of20

±45◦) smoke layers are assumed to peak at 6 km. The height of smoke layers between
30◦ and 45◦ latitude in both hemispheres is interpolated with latitude between 3 and 6
km. The location of desert dust aerosol layers varies between 1.5 and 10 km, and is
given by a multi-year climatological average of Chemical Model Transport calculations
using the GOCART model at a lat-lon resolution of 2◦ ×2.5◦ (Ginoux et al., 2001). For25

sulfate-based aerosols the assumed vertical distribution is largest at the surface and
decreases exponentially with height.
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For a chosen aerosol type and assumed aerosol layer height, the extinction optical
depth and single scattering albedo at 388 nm are retrieved and aerosol absorption
optical depth is calculated. Results are also reported at 354 and 500 nm to facilitate
comparisons with measurements from other space-borne and ground based sensors.

Aerosol parameters over land are retrieved for all cloud-free scenes as determined5

by an internal cloud mask. Retrievals over the ocean, however, are limited to cloud-free
scenes containing absorbing aerosols (i.e. smoke or desert dust) as indicated by UVAI
values larger than unity. Since the current representation of ocean surface effects in
the OMAERUV algorithm does not explicitly correct for ocean color signal, the retrieval
of accurate background maritime aerosol is not currently possible.10

Algorithm quality flags are assigned to each pixel. Most reliable OMAERUV retrievals
have a quality flag 0. Quality flag 1 indicates sub-pixel cloud contamination. For quanti-
tative applications using OMAERUV derived aerosol optical depth and single scattering
albedo only data of quality flag 0 is recommended. For this comparison flag 0 data have
been extrapolate to 440 nm.15

2.3.2 KNMI

The OMI multi-wavelength algorithm OMAERO (Torres et al., 2002) is used to de-
rive aerosol characteristics from OMI spectral reflectance measurements of cloud-free
scenes. Under cloud-free conditions, OMI reflectance measurements are sensitive to
the aerosol optical depth, the single-scattering albedo, the size distribution, altitude20

of the aerosol layer, and the reflective properties of the surface. However, from a
principal-component analysis applied to synthetic reflectance data (Veihelmann et al.,
2007), it was shown that OMI spectra contain only two to four degrees of freedom
of signal. Hence, OMI spectral reflectance measurements do not contain sufficient
information to retrieve all aerosol parameters independently. The OMAERO level-225

data product reports aerosol characteristics such as the AOD, aerosol type, aerosol
absorption indices as well as ancillary information. The AOD is retrieved from OMI
spectral reflectance measurements and a best-fitting aerosol type is determined. The
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single-scattering albedo, the layer altitude and the size distribution associated with the
best-fitting aerosol type are reported.

Cloudy scenes are excluded from the retrieval using three tests. The first test is
based on reflectance data in combination with the UV absorbing aerosol index. The
second test uses cloud fraction data from the OMI O2-O2 cloud product OMCLDO25

(Acarreta and Hann, 2002; Acarreta et al., 2004; Sneep et al., 2008). The third test
is based on the spatial homogeneity of the scene. The latter test is the most strict for
screening clouds in the current implementation of the algorithm.

The OMAERO algorithm evaluates the OMI reflectance spectrum in a set of fifteen
wavelength bands in the spectral range between 330 and 500 nm. The wavelength10

bands are about 1 nm wide and were chosen such that they are essentially free from
gas absorption and strong Raman scattering features, except for a band at 477 nm,
which comprises an O2-O2 absorption feature. The sensitivity to the layer altitude
and single-scattering albedo is related to the relatively strong contribution of Rayleigh
scattering to the measured reflectance in the UV (Torres et al., 1998). The absorption15

band of the O2-O2 collision complex at 477 nm is used in OMAERO to enhance the
sensitivity to the aerosol layer altitude (Veihelmann et al., 2007).

The multi-wavelength algorithm uses forward calculations for a number of micro-
physical aerosol models that are defined by the size distribution and the complex re-
fractive index, as well as the AOD and the aerosol layer altitude. The models are rep-20

resentative for the main aerosol types of desert dust, biomass burning, volcanic and
weakly absorbing aerosol. Several sub-types or models represent each of these main
types. Synthetic reflectance data have been pre-computed for each aerosol model us-
ing the Doubling-Adding KNMI program (De Haan et al., 1987; Stammes et al., 1989;
Stammes, 2001), assuming a plane-parallel atmosphere and taking into account mul-25

tiple scattering as well as polarization. For land scenes the surface albedo spectrum
is taken from a global climatology that has been constructed using Multi-angle Imag-
ing Spectroradiometer (MISR) data measured in four bands (at 446, 558, 672, and
866 nm) that are extrapolated to the UV. For ocean surfaces the spectral bidirectional
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reflectance distribution function is computed using a model that accounts for the chloro-
phyll concentration of the ocean water and the near-surface wind speed (Veefkind and
de Leeuw, 1998).

For each aerosol model, an AOD is determined by minimizing the χ2 merit func-
tion obtained with the spectra of measured reflectances, the computed reflectances5

(function of the AOD), and the error in the measured reflectances.
The aerosol model with the smallest value of χ2 is selected and the corresponding

AOD at fourteen different wavelengths is reported as the retrieved AOD. Other reported
parameters are the single-scattering albedo, the size distribution and the aerosol alti-
tude that are associated with the selected aerosol model.10

Aerosol models are post-selected based on a climatology of geographical aerosol
distribution (Curier et al., 2008). The accuracy of the AOD retrieved by the OMAERO
algorithm is estimated to be the larger of 0.1 or 30 % of the AOD value. This is an
error estimate that was also used for the TOMS aerosol algorithm (Torres et al., 2005).
More information on the OMAERO algorithm and data product may be found in Torres15

et al. (2007).

2.4 MISR

2.4.1 JPL/GSFC

The Multi-angle Imaging SpectroRadiometer (MISR) was launched into a sun-
synchronous polar orbit in December 1999, aboard the NASA Earth Observing Sys-20

tem’s Terra satellite. MISR measures upwelling short-wave radiance from Earth in four
spectral bands centred at 446, 558, 672, and 866 nm, at each of nine view angles
spread out in the forward and aft directions along the flight path, at 70.5◦, 60.0◦, 45.6◦,
26.1◦, and nadir (Diner et al., 1998). Over a period of seven minutes, as the space-
craft flies overhead, a 380-km-wide swath of Earth is successively viewed by each25

of MISR’s nine cameras. As a result, the instrument samples a very large range of
scattering angles (between about 60◦ and 160◦ at mid latitudes), providing information
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about aerosol microphysical properties. These views also capture air-mass factors
ranging from one to three, offering sensitivity to optically thin aerosol layers, and allow-
ing aerosol retrieval algorithms to distinguish surface from atmospheric contributions to
the top-of-atmosphere (TOA) radiance. Global coverage (to ±82◦ latitude) is obtained
about once per week.5

The MISR Standard aerosol retrieval algorithm reports AOD and aerosol type at
17.6 km resolution, by analyzing data from 16×16 pixel regions of 1.1 km-resolution,
MISR top-of-atmosphere radiances (Kahn et al., 2009a). Over dark water, operational
retrievals are performed using the 672 and 867 nm spectral bands, assuming a Fresnel-
reflecting surface and standard, wind-dependent glint and whitecap ocean surface10

models. Coupled surface-atmosphere retrievals are performed using all four spectral
bands over most land, including bright desert surfaces (Martonchik et al., 2009), but
not over snow and ice.

MISR AOD has been validated and used over many desert surfaces (Martonchik et
al., 2004; Christopher et al., 2008, 2009; Kahn et al., 2009b; Koven and Fung, 2008;15

Xia et al., 2008, 2009), as well as other, less challenging environments. Sensitivity
to AOD and particle properties varies with conditions; at least over dark water, un-
der good retrieval conditions and mid-visible AOD larger than about 0.15, MISR can
distinguish about three-to-five groupings based on particle size, two-to-four groupings
in single-scattering albedo (SSA), and spherical vs. non-spherical particles (Chen et20

al., 2008; Kalashnikova and Kahn, 2006). The algorithm identifies all mixtures that
meet the acceptance criteria from a table of mixtures, each composed of up to three
aerosol components; the same mixture table is applied for all seasons and locations,
over both land and water. Version 22 of the MISR Standard Aerosol Product, used in
this study, contains 74 mixtures and eight components (Kahn et al., 2010), including25

a medium-mode, non-spherical dust optical analogue developed from aggregated, an-
gular shapes and a coarse-mode dust analogue composed of ellipsoids (Kalashnikova
et al., 2005).
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2.5 MERIS and SEAWIFS

2.5.1 LOV

The MERIS algorithm (Antoine and Morel, 1999) is a full multiple scattering inversion
scheme using aerosol models and pre-computed look-up tables (LUTs). It uses the
path reflectances in the near infrared, where the contribution of the ocean is null, as5

well as visible reflectances, where the marine contribution is significant and varying
with the chlorophyll content of oceanic water. A technique was proposed by Nobileau
and Antoine (2005) to overcome the difficulty in discriminating between absorbing and
non-absorbing aerosols. In the present regional application, a climatology is used
for water reflectance and error as described in Antoine and Nobileau (2006). After10

absorption has been detected, the atmospheric correction is restarted using specific
sets of absorbing aerosol models (i.e. specific LUTs). The aerosol optical thickness at
all wavelengths and the Ångström exponent are then derived.

For non-absorbing aerosol, a set of twelve aerosol models is used from Shettle and
Fenn (1979) and Gordon and Wang (1994). This set includes four maritime aerosols,15

four rural aerosols that are made of smaller particles, and four coastal aerosols that are
a mixing between the maritime and the rural aerosols. The mean particle sizes of these
aerosols, and thus their optical properties, vary as a function of the relative humidity,
which is set to 50, 70, 90 and 99 % (hence the 3 times four models). In addition to these
boundary-layer aerosols, constant backgrounds are introduced in the free troposphere20

(2–12 km), with a continental aerosol AOD of 0.025 at 550 nm (WCRP, 1986) and in the
stratosphere (12–30 km), with H2SO4 aerosol AOD of 0.005 at 550 nm (WCRP, 1986).

For the absorbing case, the look-up tables use the six dust models and the three ver-
tical distributions proposed by Moulin et al. (2001), which were derived as the most ap-
propriate to reproduce the TOA total radiances recorded by SeaWiFS above thick dust25

plumes off western Africa. The mean Ångström exponent of these models is about 0.4
when computed between 443 and 865 nm. When these aerosols are present, a back-
ground of maritime aerosol is maintained, using the Shettle and Fenn (1979) maritime
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model for a relative humidity of 90 % and an optical thickness of 0.05 at 550 nm (Kauf-
man et al., 2001). The backgrounds in the free troposphere and the stratosphere are
unchanged.

A specific test using the band at 412 nm was developed in order to eliminate clouds
without eliminating thick dust plumes (see also Nobileau and Antoine, 2005), which5

are quite bright in the near infrared and therefore are eliminated when using a low
threshold in this wavelength domain (as done for instance in the standard processing
of the SeaWiFS observations). The same algorithm is applied to SeaWiFS. In this
case, specific look-up tables are used that correspond to the SeaWiFS bandset. This
is the only difference as compared to the MERIS version.10

2.6 MODIS

2.6.1 NASA-GSFC

In this intercomparison the Deep Blue retrieval have been considered and this dataset
include only data over land. The principal concept behind the Deep Blue algorithm’s
retrieval of aerosol properties over surfaces such as arid and semi-arid takes advan-15

tage of the fact that, over these regions, the surface reflectance is usually very bright in
the red part of the visible spectrum and in the near infrared, but is much darker in the
blue spectral region (i.e. wavelength less then 500 nm). In order to infer atmospheric
properties from these data, a global surface reflectance database of 0.1◦ latitude by
0.1◦ longitude resolution was constructed over land surfaces for visible wavelengths20

using the minimum reflectivity technique (for example, finding the clearest scene dur-
ing each season for a given location). For MODIS collection 5.1 Deep Blue products,
the surface BRDF effects are taken into account by binning the reflectivity values into
various viewing geometries.

Cloud masks used in the Deep Blue algorithm are different from the standard MODIS25

cloud masks. They are generated internally and consist of 3 steps: (1) determining the
spatial variance of the 412 nm reflectance; (2) using the visible aerosol index (412–
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470 nm) to distinguish heavy dust from clouds; and (3) detecting thin cirrus based on
the 1.38 micron channel reflectance. After cloud screening, the aerosol optical depth
and aerosol type are then determined simultaneously in the algorithm using look-up
tables to match the satellite observed spectral radiances. The final products include
spectral aerosol optical depth, Ångström exponent, as well as single scattering albedo5

for dust. More information on the deep blue algorithm can be found at Hsu et al. (2004)
and Hsu et al. (2006).

2.7 SEVIRI

2.7.1 Globaerosol

The DRI intercomparison has made use of the SEVIRI GlobAEROSOL product. This is10

derived using the Oxford-RAL Aerosol and Cloud optimal estimation retrieval scheme.
A full description of the retrieval is given by Thomas (2009). It makes use of the 0.64,
0.81 and 1.64 micron channels of SEVIRI at 10:00, 13:00 and 16:00 UTC. The forward
model includes a BRDF description of the surface reflectance and by constraining the
relative strengths of the direct, hemispherical and bi-hemispherical surface reflectance15

to a priori values, the aerosol optical depth, effective radius and the surface reflectance
in each channel can be retrieved. The a priori surface reflectance is determined by the
16-day MODIS BRDF product over land and by an ocean surface reflectance model
over the ocean.

Retrievals are done for each of five predefined aerosol types: desert dust, maritime20

clean, continental clean, and urban, all using components properties from the Optical
Properties of Aerosols and Clouds (OPAC) database (Hess et al., 1998) and biomass-
burning (from Dubovik et al., 2006). From these five results a best match is selected
based on the quality of the fit to the measurements and a priori constraints, providing
a crude speciation of the aerosol.25
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2.7.2 ORAC

The SEVIRI-ORAC dataset represents an updated version of the aerosol retrieval al-
gorithm used in SEVIRI-GlobAEROSOL. The main difference is the addition of the
infrared channels that allow the SEVIRI retrieval over bright surface. A simultane-
ous aerosol retrieval that considers the visible, near-infrared and mid-infared channels5

(0.64, 0.81, 1.64, 10.78, 11.94 micron) is used, as described in detail by Carboni et
al. (2007).

The main difference from the Globaerosol algorithm is the addition of 2 IR channels
around 11 and 12 microns, (assuming surface emissivity equal to ocean emissivity).
For these infrared channels ECMWF profile and skin temperature are used to define10

the clear sky atmospheric contribution to the signal. Together with AOD at 550 nm and
effective radius, the altitude of the aerosol layer and surface temperature are part of
the state vector of the retrieved parameters. The retrieval is run only with the desert
dust aerosol class (spherical particles): this will produce errors in non dust conditions,
and in particular will produce an overestimation of AOD in clean conditions and more15

scattering aerosol type (non dust). In this dataset only the SEVIRI scenes acquired at
12:12 UT are analysed, to allow the maximum thermal contrast and with no need for
interpolation of ECMWF data.

A data cut is then performed, excluding pixels that result in AOD greater than 4.9,
AOD less the 0.01, effective radius greater the 3 µm, brightness temperature difference20

at 11–12 microns greater than 1.2 K, cost function greater than 15 and pixels where
the retrieval is not converging.

2.7.3 IMPERIAL

Two different retrieval schemes are employed depending on whether the SEVIRI obser-
vations are taken over land or over ocean. In both cases retrievals are only performed25

if the scene is designated non-cloudy. Over ocean, the cloud detection scheme de-
scribed by Ipe et al. (2004) is utilised in conjunction with a subsequent test to restore
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any dusty points incorrectly flagged as cloud (Brindley and Russell, 2006). Over land,
the scheme of Ipe et al. (2004) is supplemented by the cloud detection due to Derrien
and Le Gleau (2005). Again, dusty points incorrectly flagged as cloud are restored
based on the threshold tests developed under the auspices of the Satellite Application
Facility for Nowcasting (Meteofrance, 2005).5

2.7.4 Imperial VIS

Over ocean, optical depths at 0.6, 0.8 and 1.6 microns are obtained independently
from the relevant channel reflectances according to the algorithm described in Brindley
and Ignatov (2006). Briefly, this scheme involves the use of reflectance look-up tables
(LUTs) derived as a function of solar/viewing geometry and aerosol optical depth. For10

a given sun-satellite geometry and channel, the retrieved optical depth is that which
minimises the residual between the observed and simulated reflectance. One fixed
“semi-empirical” aerosol model is used in the construction of the LUTs, matching the
representation originally employed in the retrieval scheme developed for the Advanced
Very High Resolution Radiometer (AVHRR) (Ignatov and Stowe, 2002). Using the15

optical depths derived from the different channels, one can also obtain estimates of
Ångström coefficients: these can subsequently be used to scale the retrievals to al-
ternative wavelengths as required. De Paepe et al. (2008) show that retrievals using
this method exhibit RMS differences with co-located MODIS optical depths that are
typically less than 0.1.20

2.7.5 Imperial IR

Over land, the lack of contrast between aerosol and surface reflectance in the solar
bands makes it difficult to use these alone to obtain a quantitative measure of aerosol
loading. Instead a relatively simple method is used which relates dust-induced vari-
ations in SEVIRI 10.8 and 13.4 micron brightness temperatures to the visible optical25

depth (Brindley and Russell, 2009). This technique essentially builds on the method
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originally developed for Meteosat by Legrand et al. (2001), but attempts to eliminate
the impact of variations in the background atmospheric state on the brightness tem-
perature and hence optical depth signal. Comparisons with co-located AERONET and
aircraft measurements (Brindley and Russell, 2009; Christopher et al., 2011) indicate
a maximum uncertainty of 0.3.5

2.8 POLDER/PARASOL

The instrument on the PARASOL platform (Polarization and Anisotropy of Reflectances
for Atmospheric Science coupled with Observations from a Lidar), which is the second
in the CNES Myriade line of microsatellites, is largely based on the POLDER instru-
ment (Deschamps et al., 1994). The CCD has been rotated by 90◦ to allow a larger10

scattering angle range and the spectral range (440 to 910 nm) has been extended up
to 1020 nm. Its two main factors are the ability to measure the linear polarization of
the radiance in three spectral bands, 490, 670 and 865 nm, and to acquire the direc-
tional variation of the total and polarized reflected radiance. The instrument concept
is based on a wide field of view lens and a bi-dimensional CCD that provides an in-15

stantaneous field of view of ±51◦ along-track and ±43◦ cross-track. As the instrument
flies over the target, up to sixteen views are acquired which can be composed to infer
the directional signature of the reflectance. This signature provides information on the
surface, aerosol, and cloud characteristics. A limitation of POLDER is the rather crude
spatial resolution of about 6 km. The POLDER instrument flew onboard the ADEOS 120

and 2 platforms in 1996–1997 and 2003, respectively. Unfortunately, due to the failure
of the satellite solar panels, the measurement time series are limited to respectively 8
and 7 months. The microsatellite PARASOL was launched in December 2004; it is still
operating and was part of the A-train since December 2009.

Algorithms have been developed to process the sun radiances reflected by the25

Earth’s surface and atmosphere in terms of aerosol products (Deuzé et al., 2001;
Herman et al., 2005). We describe in more detail how the specific characteristics
of POLDER have been used to retrieve aerosol properties.
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2.8.1 Aerosol over the oceans

The combination of spectral-directional and polarized signature provide a very strong
constraint to invert the aerosol load and characteristics The present algorithm (Herman
et al., 2005) assumes spherical or non-spherical particles, non-absorbing particles, and
the size distribution follows a combination of two log-normal aerosol size distributions in5

the accumulation and coarse modes respectively. In a first step, the retrieval of optical
depth and size distribution is achieved using radiance measurements in two aerosol
channels, 670 and 865 nm. When the geometrical conditions are optimum, i.e. when
the scattering angle coverage is larger that 125◦–155◦, the shape (spherical or not) of
the particles is derived. In a second step, the refractive index retrieval is attempted10

from the polarization measurements.
Comparisons with AERONET measurements show very good agreement, with typ-

ical RMS errors less than 0.10, including errors due to cloud cover or time difference
acquisition within ±1 h, with no significant bias. With an additional removal of cloud-
contaminated cases, the statistical RMS error is close to 0.03. The fine mode optical15

depth can also be compared to AERONET measurements, albeit with some uncer-
tainty on the aerosol radius cut-off. Statistical results indicate a low bias of 0.02 with a
standard deviation of 0.02.

The combination of spectral, directional and polarization information has been used
to attempt a retrieval of the aerosol refractive index over the oceans. The results in-20

dicate that, when the coarse mode is spherical, the refractive index is close to that
of water (1.35), indicating hydrated particles. When the coarse mode is mostly non-
spherical, however, the retrieval is found to be inconclusive. As for the fine mode, the
inverted refractive index is generally found between 1.40 and 1.45, with no clear spatial
distributions.25
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2.8.2 Aerosol over land

The retrieval of aerosol load properties over land surface is based on polarized re-
flectance measurements. When the surface reflectance is generally larger than that
generated by aerosols, which makes quantification difficult from radiance measure-
ments alone, the polarized reflectance of land surfaces is moderate and spectrally con-5

stant, although with a very strong directional signature (Nadal and Bréon, 1999). On
the other hand, scattering by submicron aerosol particles generates highly polarized
radiance (Deuzé et al., 2001), which makes it possible to estimate the corresponding
load. Nevertheless, larger aerosol particles, such as desert dust, do not nearly polar-
ize sunlight and are therefore not accessible to a quantitative inversion from POLDER10

measurements. In addition, the polarized reflectances of bright surfaces is larger than
over vegetated areas, which makes the dust retrieval very challenging. Let us mention
that in case of very strong events, dust can bias the accumulation mode retrieval. The
retrievals from POLDER measurements show that submicron particles are dominant in
regions of biomass burning as well as over highly polluted areas (Tanré et al., 2001).15

The continuity at the land/sea boundaries is observed in most regions, which gives us
good confidence in the quality of the inversions.

Over land, the evaluation of POLDER retrievals is made against the fine mode optical
depth derived from AERONET measurements. The results show no significant bias
and an RMS error on the order of 0.05 when dust loaded atmosphere is excluded (i.e.20

a validation in regions affected by biomass burning or pollution aerosols).

3 Results of individual datasets

Figure 1 shows the 550 nm AOD for 8 March 2006. This day is a good example of a
desert dust plume extending over both land and ocean. The differences in the instru-
ment spatial coverage show how rarely (or how often) there are coincidences between25

the datasets. There are few coincidences between instruments with narrow swaths
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(like AATSR vs MISR), while geostationary instruments (SEVIRI) and polar orbiters
with a large swath (such as OMI) can give a near complete coverage of the geographic
area and have a large number of coincidences with both other satellite datasets and
AERONET.

Some care must be taken when comparing the different results in Fig. 1. For in-5

stance, AIRS provides AOD at 900 cm−1; it is included in the comparison because it
can provide information on AOD of large particles, but a direct comparison with visible
AOD (which is far more sensitive to smaller particles) can be misleading. To make a
direct comparison one could rescale the infrared AOD to an effective value at 550 nm,
assuming a specific size distribution. Potentially the different sensitivities of the two10

ranges could be used to infer information on the size distribution, as attempted by the
ORAC-SEVIRI scheme. Similarly, POLDER data over land is particularly sensitive to
submicron aerosol particles and not the total optical depth.

Here the AIRS AOD and POLDER over land AOD are presented without attempting
to scale to optical depth at 550 nm. In scatter plots with other datasets the “ideal slope”15

for these instruments is not expected to be one, and if the relative amount of small and
large particles changes over the scene then the correlation will be less than one.

Figure 2 shows the monthly AOD obtained by averaging daily 0.5×0.5 degree grid-
ded data. Monthly mean dust AOD varies enormously between the datasets. Even
over the ocean, where all the retrievals are expected to be more accurate, the monthly20

AOD inside the area affected by dust (south west of the plots) varies from 0.5 (MERIS
and SEAW) to 2 (ATSR-ORAC). Some difference are due to instrument sampling, but
the largest effect arises from the quality control applied to screen the data for “valid”
retrievals, as differences between the two OMI datasets show very clearly. MERIS,
SEAW and SEVGLOB frequently cut the dense part of the plume and this is reflected25

in the low monthly average AOD.
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4 AERONET comparison

A comparison between AERONET level 2 ground data (Holben et al., 1998) and co-
located values for each satellite dataset have been made. Here it is essentially as-
sumed that variability in time is somehow related to variability in space (Ichoku et al.,
2002), and an average of all the valid satellite retrievals over a 50 km radius around5

each AERONET site has been made. To match the data spectrally the AOD at 550 nm
(τ550) are obtained using AOD at 440 nm (τ440) and Ångström coefficient between 440
and 870 nm (α) according to:

τ550 = τ440

�
0.55
0.44

�−α
(2)

Then all the AERONET AOD within an interval of half an hour from the satellite10

overpass time (i.e. a time window of 1 h) have been averaged, and all the coincidences
with at least two AERONET measurements within this time have been considered.
Note that not all satellite datasets have 550 nm in the spectral range used in the aerosol
retrieval: in this case the AOD at 550 nm is extrapolated, and this can amplify errors. All
the AODs in the AERONET comparisons are reported at 550 nm except for OMI-NASA15

which is reported at 440 nm. Some datasets (see Table 1) have values only over ocean
so the comparison is possible only with coastal sites.

Figure 3 shows the location and the symbols that will be used in the scatter plots
(Figs. 4 and 5) for the AERONET sites considered. Their coordinates are tabulated in
Table 2 together with a classification of land/coast site.20

Figure 4 shows an example of satellite vs. AERONET scatter plots for SEVIRI-ORAC.
The scatter plots are given for the individual AERONET sites, allowing regional and
local issues to be identified. A summary plot is produced using all the coincident data
available in all the locations together. On each plot red stars show the value of two
times the AERONET Ångström coefficient (between 440 and 870 nm). These values25

can help to qualitatively distinguish the desert dust measurements (low values) from
the smaller particles (high values).
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The vertical error bars are the standard deviation (STD) of the satellite measure-
ments (within the area around the AERONET station). The horizontal error bars are
the standard deviations of the AERONET measurements (within the 30 minutes around
the satellite time).

Figure 4 shows that for AODs values higher than one, SEVIRI-ORAC underestimates5

the AOD, and does so more over land than over ocean. Looking at the sites with AOD
higher then 1, Cinzana and Banzimbou (land sites) exhibit a larger underestimation,
Dakar (on the coast) is an intermediate case, and Capo Verde (an island in the ocean)
has a slope close to 1. This behaviour could be the result of imperfect land surface
modelling or imperfect modelling of the dust spectral optical properties. Note that the10

IR channels have more importance in the SEVORAC retrieval over land where the
visible channels (high surface reflectance) are assumed to be more affected by errors,
so correct modelling of the IR optical properties becomes more important over land.

The Saada site appears to be outside the desert storm of March 2006 as shown by
the consistently high values of Ångström coefficient. Note that Tamanrasset is at an15

altitude of 1000 m, which could explain why its observations are biased compared to
nearby satellite observations, particularly in the case of a desert plume flowing close
to the surface.

Similar analyses have been performed for each of the datasets against coincident
AERONET measurements: a summary is presented in Fig. 5.20

POLDER over land is included for completeness, but one should take into account
the fact that the polarisation-based measurement is sensitive only to small particles
(fine mode) so the resulting AOD is a fraction of the total aerosol AOD.

Figure 5 shows all the coincidences together for all the datasets available in order to
check the overall quality of satellite retrievals. Not surprisingly, the best agreements are25

for coast AERONET sites (Capo Verde, Dakar and Tenerife) and ocean only datasets
(MERIS-LOV, POLDER-OCEAN, SEWIFS, SEVIRI-IMP-VIS) where satellite aerosol
retrieval is more accurate then over land. With the datasets that consider both ocean
and land, apart from OMI datasets, there is a tendency to underestimate the AOD,
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especially for high AOD (values more then 1) and low Ångström coefficients, conditions
that are a good indication of dust. This can indicate that there is a need to improve dust
optical properties and surface characterization over land.

A similar analysis has been performed with only the coincidences where AERONET
Ångström coefficient is lower then 0.7 in order to test the satellite retrieval in dust5

conditions only. Apart from decreasing the numbers of coincidences (removing nearly
all data in the Saada site), these results show little variation (less than 10 % in CC and
RMSD) and are not substantially different from Fig. 5.

5 Satellite inter-comparison

After the single datasets have applied their own data cut, for each day we compare, one10

by one, each dataset against the others. For every dataset, a data box with two or more
measurements and standard deviation less than 0.5 has been considered. Figures 6
and 7 show an example for MISR over land and POLDER over ocean. The summary
in terms of Correlation coefficient (CC) and root mean square difference (RMSD) is
shown in Figs. 8 and 9.15

The line over-plotted in the density plot is obtained by considering every latitude-
longitude box mean AOD, and AOD STD as error, with a linear fitting procedure. Cor-
relation coefficient (CC), root mean square difference (RMSD), and best fit are also
indicated within the scatter plots. The comparison is divided by land and ocean.

In Figs. 8 and 9 the values above the diagonal refer to land comparison; the values20

below the diagonal refer to ocean comparison. As expected, over ocean CC are higher
and RMSD are lower.

AATSR and MISR are most correlated with each other, possibly because both exploit
multi-angle viewing and because the local time of measurement differs only by half
an hour. The Figs. 8 and 9 do not show any particular “time effect”; for example, if25

the difference in time of measurement plays a dominant role in this intercomparison,
it would be expected that POLDER/OMI/AIRS (overpass at 13:30) would differ more
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from ATSR/MISR (overpass at 10:30) and they would agree better with each other, but
this is not reflected in terms of correlation coefficient and root mean square differences.

The comparisons with AERONET (Sect. 4) show better results than the satellite-to-
satellite AOD inter-comparisons. This has been previously documented for MISR and
MODIS (Mishchenko et al., 2007, 2010; Tanré, 2010). It is explained by considering5

AERONET AOD as ground truth. Each satellite AOD dataset has a confidence enve-
lope spread around this truth. When comparing any pair of satellite data sets directly,
we cannot consider one as truth. For MISR and MODIS specifically, assumptions made
in each algorithm mean that one instrument tends to overestimate AOD in specific situ-
ations where the other underestimates AOD. The result is that the satellite-AERONET10

envelope for each instrument is smaller than the envelope produced by comparing
the two satellite instrument datasets directly; when the confidence envelopes are con-
volved correctly, the differences between MISR and MODIS are actually slightly smaller
than might be expected from the individual instrument comparisons with AERONET
(Kahn et al., 2009a).15

6 Combined dataset

Because of the non-complete coverage of any single satellite dataset, the data that we
can use to follow the behaviour of dust plumes during March, 2006 is a combination of
all the different satellite datasets available. A combination weighted with error estimates
would be the best way to characterise these dust events, but at present a complete20

quality assessment study for every dataset in every condition is not available.
In this work a combined dataset is obtained using a simple average (as explained

further below). It is used to analyse where there are the most discrepancies between
datasets: this can be used to indicate which areas need improvement.

Moreover, the average of all the datasets has been used to com-25

pare/improve/assimilate the transport model (Banks et al., 2009; Banks, 2010).
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For each grid box and for each day of March 2006 the satellite retrievals were av-
eraged to create a daily mean “all retrievals” field. If the satellite instruments have
more than one algorithm the different algorithm results are averaged, first for the same
instrument, and then successively the average between the different instruments is
performed. This is in order to avoid weighting more heavily an instrument with several5

datasets (for example, SEVIRI has four datasets in this comparison).
For each grid box a daily average was calculated. Successively averaging these

daily values gives monthly means. Figure 10 shows the daily average AOD obtained
for March 2006. The daily average AOD from all datasets shows very good conti-
nuity, including at the coastal boundary and between areas with different numbers of10

datasets.
To check the quality of the combined dataset, a comparison with AERONET is pro-

duced in much the same way as the individual dataset comparisons (e.g. Fig. 4). This
is presented in Fig. 11. The differences are that the AERONET data are considered
over a longer time interval, from 10:00 a.m. to 02:00 p.m., and for space coincidence all15

the combined AOD that have the central grid box within 50 km from the AERONET site
are considered (between one and four combined AOD are averaged in this compari-
son, depending on location). Values of CC and RMSD for the combined dataset are
in the same range as the single dataset comparisons with AERONET. The error bars
on single datasets are often larger in both axes, x and y, due to larger STD in satellite20

combined AOD (y), and the larger variations in AEROENET AOD inside the wider time
interval. Once again, the best comparisons are obtained for coastal sites (Capo Verde,
Dakar and Tenerife) and we notice an underestimation of AOD at high AOD and low
Ångström coefficient.

Figure 12 shows the daily average AOD of all datasets for 8 March 2006, the num-25

bers of instruments averaged in every box, the standard deviation (STD) and the ratio
STD/AOD. The STD gives a measure of how much the AOD is different between instru-
ments: it can be seen as an uncertainty of AOD given by the difference in instruments,
algorithms and aerosol models considered. The STD is generally, as expected, higher
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where the AOD is higher and in correspondence with the dust plume both over land and
over ocean areas. It is not particularly related to the number of measurements used.
The value of STD/AOD can be seen as relative error: when it is bigger, it visualizes
where the spread between instrument value (STD) is higher than the AOD itself. Over
ocean, the higher area corresponds to the plume itself and to the pixels that presumably5

are affected by cloud contamination. Over land, the higher areas are where there is
more uncertainty on surface characterisation (bright surface for the north of Africa) and
again cloud contamination (the south east part of the plot). Moreover, some satellite
cloud masks cannot distinguish water cloud from thick aerosol, so “cloudy conditions”
for some retrievals might actually be dust.10

Figure 13 presents the average over the month of all the images in Fig. 12.
Starting from the daily values, the averages over all the days have been computed in

order to obtain the monthly values presented in Fig. 13. The plot of monthly STD shows
the variation of AOD between datasets. As expected, it is related to the behaviour of
AOD itself, and is higher where the AOD is higher. So in the monthly means we have15

a higher dispersion of AOD values in the areas of higher average AOD conditions. The
area in the bottom part of the plot over Africa (Nigeria approximately) is definitely an
area overpassed by the March 2006 dust plume but it is also where we have significant
data screened out due to cloudy conditions (low values of N in both monthly means
and daily plots) so the large dispersion of AOD could be attributed to cloud.20

The values of STD/AOD are shown in the spread of the data compared to the AOD
itself, over the whole month. If we look at this plot together with the plot of N (average
number of dataset/measurements) it is possible to note that we have higher values
where we have fewer measurements.

Over land, STD/AOD is bigger than one in the region where we are presumably25

more affected by cloud contamination (south part of the plot) and there is an area of
consistently high values (0.7–0.8) corresponding to bright surface. Unfortunately there
is a lack of AERONET stations in this region.
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Over ocean, the positions of the higher values are less localized and more “noisy”
but surprisingly they reach comparable values.

7 Conclusions

This intercomparison has been valuable for identifying some deficiencies in retrieval
schemes. For example, with SEVIRI ORAC the main issue is a bias over desert in5

clean conditions, which is attributed to error in the modelling of surface properties.
All datasets show a reasonably good agreement with AERONET. Typically, the stan-

dard deviation of observations with respect to AERONET is around 0.1–0.2. Discrep-
ancies between satellite datasets are larger than this agreement with AERONET would
imply. This is possibly due to the fact that AERONET itself provides a stringent quality10

control.
The standard deviation between datasets is higher in the desert dust plume and

sometimes is comparable with the average AOD itself. However, the dispersion (stan-
dard deviation) of the AOD values between datasets compared with the average AOD
itself (STD/AOD) presents higher values consistently, for the period considered, over15

the area of bright land surfaces. Unfortunately, over such regions there is a particular
lack of AERONET stations.

There is a need to improve dust optical properties and surface characterization over
land, and to extend the comparisons to the retrieved aerosol models in a future study.

There are remarkable differences in the monthly means obtained with the individual20

satellite datasets, and this is mainly due to differences in satellite coverage (overpass
time, swath) and quality control data cuts.

Removal of data for quality control is one of the more important sources of such
differences. For example, monthly means over ocean from the same satellite (but
different datasets/algorithm) still show discrepancies. To a lesser extent, differences25

are also produced by differences in aerosol model and retrieval algorithm used. With
the intention of avoiding cloud, some datasets make very restrictive data cuts and cut
the densest parts of the plume, which leads to a large bias in the monthly mean.
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Every single dataset has some weakness due to the single instrument characteristic
and to the algorithm itself, but the combined AOD from all datasets for March 2006
shows very good spatial continuity, in particular over the coastline and over boundaries
where the number of contributing datasets changes.

This encouraging result from such a simple method suggests that the best way to5

characterize an aerosol event is to exploit the complementary capacities of different
sensors. The development of more optimal techniques to perform this merging could
be an interesting topic for further research.
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Martins, J. V., Tanré, D., Deuzé, J. L., Ducos, F., and Torres, O.: Infrared retrievals of dust
using AIRS: Comparisons of optical depths and heights derived for a North African dust
storm to other collocated EOS A-Train and surface observations, J. Geophys. Res., 115,
D15201, doi:10.1029/2009JD012842, 2010.

Derrien, M. and Le Gleau, H.: MSG/SEVIRI cloud mask and type from SAFNWC, Int. J. Remote5

Sens., 26, 4707–4732, doi:10.1080/01431160500166128, 2005.
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Tanré, D.: Derivation of tropospheric aerosol properties from satellite observations, Comptes

Rendus Geoscience, 342, 403–411, 2010.20
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Table 1. List of the different datasets participating in the intercomparison, divided by instrument.
The datasets are flagged with a cross for retrieval over land, over ocean and in comparison with
AERONET sites.

SEVIRI Time UTC Retrieval over: Ocean Land AERONET

ORAC 12:12 x x x
Globaerosol 10:00 13:00 16:00 x x x
Imperial VIS 12:12 x
Imperial IR 12:12 x x

AATSR Orbit local time
ORAC 10:00 x x x
Globaerosol 10:00 x x x
Swansea 10:00 x x x

AIRS
JCET 13:30 x x

OMI
NASA-GSFC 13:30 x x x
KNMI 13:30 x x x

MISR
JPL-GSFC 10:30 x x x

MERIS
LOV 10:00 x x

SEAWIFS
LOV 12:20 x x

MODIS
NASA-GSFC 10:30 13:30 x x

POLDER
Ocean 13:30 x x
Land 13:30 x x
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Table 2. AERONET sites considered in the comparison: Name, latitude, longitude and type
(land or coast). The same sites are shown in Fig. 3.

SITE lat. lon. type

Agoufou 15.34 −1.48 land
Banizoumbou 13.54 2.67 land
Capo Verde 16.73 −22.94 coast
Dakar 14.39 −16.96 coast
Djougou 9.76 1.60 land
IER Cinzana 13.28 −5.93 land
Saada 31.63 −8.16 land
Santa Cruz Tenerife 28.47 −16.25 coast
Tamanrasset TMP 22.79 5.53 land
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Fig. 1. Image of AOD of the different datasets corresponding to 8 March 2006.
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Fig. 2. Image of monthly mean AOD of the different datasets for March 2006.
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Fig. 3. Location and symbol of the AERONET sites. Every site has a different symbol, consistent with the

following AERONET plots: open for coast sites, closed for land sites.
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Fig. 3. Location and symbol of the AERONET sites. Every site has a different symbol, consis-
tent with the following AERONET plots: open for coast sites, closed for land sites.
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Fig. 4. Example of a scatter plot between AERONET data (x) and satellite (y) for SEVIRI-
ORAC. The black/brown symbols are satellite datasets (y) vs. AERONET AOD (x). Different
locations are represented by different symbols, as with Fig. 3. The red stars represent two
times the AERONET Ångström coefficient (between 440 and 870 nm). The final plots show all
the coincidences. In every scatter plot with more then four coincidences there are captions indi-
cating the best linear fit (angular coefficients, y intercept and associated errors), the correlation
coefficient (CC) and the root mean square differences (RMSD).
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Fig. 5. Scatter plots, satellite datasets AOD (y) vs. AERONET AOD (x), for all the available
coincidences. Different locations are represented by different symbols, as defined in Fig. 3. In
every scatter plot there are captions indicating the best linear fit (angular coefficients, y intercept
and associated errors), the correlation coefficient (CC) and the root mean square differences
(RMSD).
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Fig. 6. Example of comparison over land, MISR vs. other datasets. In every scatter plot
there is a caption: the first line indicates the correlation coefficient (CC), the root mean square
differences (RMSD) and the number of coincidences (n); the second line presents the best
linear fit.
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Fig. 7. Example of scatter plots over ocean, POLDER-OC vs. other datasets. In every scatter
plot there is a caption: the first line indicates the correlation coefficient (CC), the root mean
square differences (RMSD) and the number of coincidences (n); the second line presents the
best linear fit.
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Fig. 8. Correlation coefficient obtained with the comparison of datasets vs. datasets. Values above the diagonal

are for data over land, below the diagonal are over ocean.
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Fig. 8. Correlation coefficient obtained with the comparison of datasets vs. datasets. Values
above the diagonal are for data over land, below the diagonal are over ocean.
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Fig. 9. Root mean square difference between different datasets. Values above the diagonal are for data over

land, below the diagonal are over ocean.
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Fig. 9. Root mean square difference between different datasets. Values above the diagonal
are for data over land, below the diagonal are over ocean.
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Fig. 10. Combined daily AOD for the first 30 days of March 2006.
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Fig. 11. Combined daily AOD vs. AERONET. Equivalent of Fig. 4 but obtained considering the
combined AOD instead of a single satellite dataset. Different locations are shown in different
plots and are represented by different symbols, as with Fig. 3. The red stars represent two
times the AERONET Ångström coefficient (between 440 and 870 nm). The final plots show all
the coincidences.
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Fig. 12. Daily map for 8th March, 2006 of the combined AOD (top left), the number N of instruments consid-

ered for every box (top right), standard deviation STD (bottom left) and ratio between standard deviation and

aerosol optical depth STD/AOD (bottom right).
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Fig. 12. Daily map for 8 March 2006 of the combined AOD (top left), the number N of in-
struments considered for every box (top right), standard deviation STD (bottom left) and ratio
between standard deviation and aerosol optical depth STD/AOD (bottom right).
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Fig. 13. Monthly average of AOD (top left), number N of instruments considered (top right), standard deviation

(bottom left) and ratio between standard deviation over AOD (bottom right). Values in black are higher then

the maximum of the colourbar.
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Fig. 13. Monthly average of AOD (top left), number N of instruments considered (top right),
standard deviation (bottom left) and ratio between standard deviation over AOD (bottom right).
Values in black are higher then the maximum of the colourbar.
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