

Brief Announcement: Self-Stabilizing Synchronization Of

Arbitrary Digraphs In Presence Of Faults

Mahyar R. Malekpour

NASA Langley Research Center, Hampton, Virginia

Mahyar.R.Malekpour@NASA.GOV

1 Introduction

This brief announcement presents a fault-tolerant self-stabilizing distributed clock

synchronization protocol for an arbitrary, non-partitioned digraph. Synchronization

algorithms are essential for managing the use of resources and controlling

communication in a distributed system. Synchronization of a distributed system is

the process of achieving and maintaining a bounded skew among independent local

time clocks. A distributed system is said to be self-stabilizing if, from an arbitrary

state, it is guaranteed to reach a legitimate state in a finite amount of time and remain

in a legitimate state. For clock synchronization, a legitimate state is a state where all

parts in the system are in synchrony. The self-stabilizing distributed-system clock

synchronization problem is, therefore, to develop an algorithm (i.e., a protocol) to

achieve and maintain synchrony of local clocks in a distributed system after

experiencing system-wide disruptions in the presence of network element

imperfections. The convergence and closure properties address achieving and

maintaining network synchrony, respectively.

The main challenge associated with distributed synchronization is the complexity

of developing a correct and verifiable solution. It is possible to have a solution that

is hard to prove or refute. Such a solution, however, is not likely to be accepted or

used in practical systems. Thus, a proposed solution must be proven to be correct.

The proposed solution must restore synchrony and coordinated operations after

experiencing system-wide disruptions in the presence of network element

imperfections and, for ultra-reliable distributed systems, in the presence of various

faults. A fault is a defect or flaw in a system component resulting in an incorrect state

[1]. Furthermore, addressing network element imperfections, e.g., oscillators drift

with respect to real time and differences in the lengths of the physical communication

media, is necessary to make a solution applicable to realizable systems.

There exist many clock synchronization algorithms for special cases and restricted

conditions. There are many solutions that are based on randomization and, therefore,

are non-deterministic, e.g., the second protocol in [2]. There are many solutions that

deal with the closure property [3] but either do not address convergence or provide an

ad hoc solution [4] for initialization and integration, separately. Typically, the

assumed topology is a regular graph such as a fully connected graph or a ring. These

topologies do not necessarily correspond to practical applications or biological, social,

or technical networks. Furthermore, the existing models and solutions do not solve

mailto:Mahyar.R.Malekpour@NASA.GOV

2 Mahyar R. Malekpour

the general case of the distributed synchronization problem. Even when the solutions

achieve synchrony, the time to achieve synchrony is very large for many of the

solutions.

We have addressed all these issues in our proposed solution. We have developed

and mechanically verified a deterministic fault-tolerant self-stabilizing distributed

clock synchronization protocol for an arbitrary, non-partitioned, strongly connected

directed graph (digraph) ranging from fully connected to 1-connected network while

allowing for differences in the network elements and tolerating detectably bad faults.

Using authentication and error detection techniques, it is possible to substantially

reduce the effects of variety of faults in the system. Furthermore, the classical

definition of a self-stabilizing algorithm assumes generally that either there are no

faults in the system [5] or all faults are detectable. Thus, we restricted our solution to

detectably bad faults. Our proposed protocol does not rely on assumptions about the

initial state of the system, and no central clock or a centrally generated signal, pulse,

or message is used. Nodes are anonymous, i.e., they do not have unique identities.

There is no theoretical limit on the maximum number of participating nodes. The

only constraint on the behavior of a node is that the interactions with other nodes are

restricted to defined links and interfaces. The protocol deterministically converges

within a time bound that is a linear function of the self-stabilization period. There is

neither a central system clock nor an externally generated global pulse or message at

the network level. The communication links and nodes can behave arbitrarily

provided that eventually the system adheres to the protocol assumptions. For a

complete technical report about our proposed solution, related literature and

protocols, the reader is referred to [5, 6, 7].

2 How The Protocol Works

In this section we provide an intuitive description of the protocol behavior. Each

node is driven by an independent, free-running local physical oscillator (i.e., the phase

is not controlled in any way) and a logical-time clock (i.e., a counter), denoted

LocalTimer, which locally keeps track of the passage of time and is driven by the

local physical oscillator. The nodes communicate with each other by broadcasting

Sync messages. Broadcast of a message by a node is realized by transmitting the

message, at the same time, to all nodes that are directly connected to it. A node

periodically undergoes a resynchronization process either when its LocalTimer times

out or when it receives a Sync message. If it times out, it broadcasts a Sync message

and so initiates a new round of a resynchronization process. However, since we are

assuming detectably bad faults, when a node receives a Sync message, except during a

predefined time interval, it accepts the Sync message and undergoes the

resynchronization process where it resets its LocalTimer and relays the Sync message

to others. This process continues until all nodes participate in the resynchronization

process and converge to a guaranteed precision. The predefined time interval where

the node ignores all incoming Sync messages, referred to as ignore window, provides

Brief Announcement: Self-Stabilizing Synchronization Of Arbitrary Digraphs In Presence

Of Faults 3

a means for the protocol to prevent the endless cycle of resynchronization processes

triggered by the succession of Sync messages.

3 Protocol Verification

A bounded model of the protocol was mechanically verified for a subset of

digraphs and modeling challenges of the protocol and the system were addressed [6].

The model checking effort was focused on verifying correctness of the bounded

model of the protocol as well as confirmation of claims of determinism and linear

convergence with respect to the self-stabilization period. In [7] we present a

deductive proof of the correctness of the protocol as it applies to networks consisting

of unidirectional and/or bidirectional links. The crux of the proof is to answer

whether or not it is possible for a message to circulate within the network without

dying out and whether or not it is possible for all nodes to transmit Sync messages

without ever timing out, assuming the synchronization period is sufficiently large. As

a result of our analysis and verification effort, we conjecture that the protocol solves

the general case of this problem. In [5] we also presented several variations of the

protocol and discussed that this synchronization protocol is indeed an emergent

system.

4 References:

1. Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-tolerant

broadcast communication system, NASA/TM-2005-213540, pp. 201, March

2005.

2. Dolev, S.; Welch, J.L.: Self-Stabilizing Clock Synchronization in the Presence

of Byzantine Faults, Journal of the ACM, Vol.51, No. 5, pp. 780-799,

September 2004.

3. Srikanth, T.K.; Toueg, S.: Optimal clock synchronization, Journal of the ACM,

34(3), pp. 626–645, July 1987.

4. Davies, D.; Wakerly, J.F.: Synchronization and matching in redundant systems,

IEEE Transactions on Computers, 27(6), pp. 531-539, June 1978.

5. Malekpour, M.R.: A Self-Stabilizing Synchronization Protocol For Arbitrary

Digraphs, The 17
th

 IEEE Pacific Rim International Symposium on Dependable

Computing (PRDC), Pasadena, California, December 12-14, 2011.

6. Malekpour, M.R.: Model Checking A Self-Stabilizing Synchronization Protocol

For Arbitrary Digraphs, the 31st Digital Avionics Systems Conference

(DASC), Williamsburg, Virginia, October 14-18, 2012, to appear.

7. Malekpour, M.R.: Correctness Proof Of A Self-Stabilizing Synchronization

Protocol For Arbitrary Digraphs, NASA/TM-2011-217184, pp. 31, October

2011.

