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1 Introduction 

This brief announcement presents a fault-tolerant self-stabilizing distributed clock 

synchronization protocol for an arbitrary, non-partitioned digraph.  Synchronization 

algorithms are essential for managing the use of resources and controlling 

communication in a distributed system.  Synchronization of a distributed system is 

the process of achieving and maintaining a bounded skew among independent local 

time clocks.  A distributed system is said to be self-stabilizing if, from an arbitrary 

state, it is guaranteed to reach a legitimate state in a finite amount of time and remain 

in a legitimate state.  For clock synchronization, a legitimate state is a state where all 

parts in the system are in synchrony.  The self-stabilizing distributed-system clock 

synchronization problem is, therefore, to develop an algorithm (i.e., a protocol) to 

achieve and maintain synchrony of local clocks in a distributed system after 

experiencing system-wide disruptions in the presence of network element 

imperfections.  The convergence and closure properties address achieving and 

maintaining network synchrony, respectively. 

The main challenge associated with distributed synchronization is the complexity 

of developing a correct and verifiable solution.    It is possible to have a solution that 

is hard to prove or refute.  Such a solution, however, is not likely to be accepted or 

used in practical systems.  Thus, a proposed solution must be proven to be correct.  

The proposed solution must restore synchrony and coordinated operations after 

experiencing system-wide disruptions in the presence of network element 

imperfections and, for ultra-reliable distributed systems, in the presence of various 

faults.  A fault is a defect or flaw in a system component resulting in an incorrect state 

[1].  Furthermore, addressing network element imperfections, e.g., oscillators drift 

with respect to real time and differences in the lengths of the physical communication 

media, is necessary to make a solution applicable to realizable systems. 

There exist many clock synchronization algorithms for special cases and restricted 

conditions.  There are many solutions that are based on randomization and, therefore, 

are non-deterministic, e.g., the second protocol in [2].  There are many solutions that 

deal with the closure property [3] but either do not address convergence or provide an 

ad hoc solution [4] for initialization and integration, separately.  Typically, the 

assumed topology is a regular graph such as a fully connected graph or a ring.  These 

topologies do not necessarily correspond to practical applications or biological, social, 

or technical networks.  Furthermore, the existing models and solutions do not solve 
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the general case of the distributed synchronization problem.  Even when the solutions 

achieve synchrony, the time to achieve synchrony is very large for many of the 

solutions. 

We have addressed all these issues in our proposed solution.  We have developed 

and mechanically verified a deterministic fault-tolerant self-stabilizing distributed 

clock synchronization protocol for an arbitrary, non-partitioned, strongly connected 

directed graph (digraph) ranging from fully connected to 1-connected network while 

allowing for differences in the network elements and tolerating detectably bad faults.  

Using authentication and error detection techniques, it is possible to substantially 

reduce the effects of variety of faults in the system.  Furthermore, the classical 

definition of a self-stabilizing algorithm assumes generally that either there are no 

faults in the system [5] or all faults are detectable.  Thus, we restricted our solution to 

detectably bad faults.  Our proposed protocol does not rely on assumptions about the 

initial state of the system, and no central clock or a centrally generated signal, pulse, 

or message is used.  Nodes are anonymous, i.e., they do not have unique identities.  

There is no theoretical limit on the maximum number of participating nodes.  The 

only constraint on the behavior of a node is that the interactions with other nodes are 

restricted to defined links and interfaces.  The protocol deterministically converges 

within a time bound that is a linear function of the self-stabilization period.  There is 

neither a central system clock nor an externally generated global pulse or message at 

the network level.  The communication links and nodes can behave arbitrarily 

provided that eventually the system adheres to the protocol assumptions.  For a 

complete technical report about our proposed solution, related literature and 

protocols, the reader is referred to [5, 6, 7]. 

2 How The Protocol Works 

In this section we provide an intuitive description of the protocol behavior.  Each 

node is driven by an independent, free-running local physical oscillator (i.e., the phase 

is not controlled in any way) and a logical-time clock (i.e., a counter), denoted 

LocalTimer, which locally keeps track of the passage of time and is driven by the 

local physical oscillator.  The nodes communicate with each other by broadcasting 

Sync messages.  Broadcast of a message by a node is realized by transmitting the 

message, at the same time, to all nodes that are directly connected to it.  A node 

periodically undergoes a resynchronization process either when its LocalTimer times 

out or when it receives a Sync message.  If it times out, it broadcasts a Sync message 

and so initiates a new round of a resynchronization process.  However, since we are 

assuming detectably bad faults, when a node receives a Sync message, except during a 

predefined time interval, it accepts the Sync message and undergoes the 

resynchronization process where it resets its LocalTimer and relays the Sync message 

to others.  This process continues until all nodes participate in the resynchronization 

process and converge to a guaranteed precision.  The predefined time interval where 

the node ignores all incoming Sync messages, referred to as ignore window, provides 
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a means for the protocol to prevent the endless cycle of resynchronization processes 

triggered by the succession of Sync messages. 

3 Protocol Verification 

A bounded model of the protocol was mechanically verified for a subset of 

digraphs and modeling challenges of the protocol and the system were addressed [6]. 

The model checking effort was focused on verifying correctness of the bounded 

model of the protocol as well as confirmation of claims of determinism and linear 

convergence with respect to the self-stabilization period.  In [7] we present a 

deductive proof of the correctness of the protocol as it applies to networks consisting 

of unidirectional and/or bidirectional links.  The crux of the proof is to answer 

whether or not it is possible for a message to circulate within the network without 

dying out and whether or not it is possible for all nodes to transmit Sync messages 

without ever timing out, assuming the synchronization period is sufficiently large.  As 

a result of our analysis and verification effort, we conjecture that the protocol solves 

the general case of this problem.  In [5] we also presented several variations of the 

protocol and discussed that this synchronization protocol is indeed an emergent 

system.  
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