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ABSTRACT 1 

The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked 2 

with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index 3 

(PRI) for a corn crop canopy at three different growth stages. This is an extended study after a 4 

successful demonstration of PRI simulations for a cornfield previously conducted at an early 5 

vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower 6 

PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the 7 

reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations 8 

displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages.  9 

Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the 10 

azimuth matching the solar principal plane.  These directional PRI responses associated with 11 

sunlit/shaded foliage were successfully reproduced by the ACRM.   As before, the simulated PRI 12 

values from the current study were closer to in situ values when both sunlit and shaded leaves 13 

were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit 14 

leaves only. Model performance as judged by correlation between in situ and simulated values 15 

was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early 16 

vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 17 

0.0104). Since the  benefit of including shaded leaves in the scheme varied across different 18 

growth stages,  a further analysis was conducted to investigate how  variable fractions of 19 

sunlit/shaded leaves  affect the canopy PRI values expected for a cornfield, with implications for 20 

remote sensing monitoring options.  Simulations of the sunlit to shaded canopy ratio near 50/50 21 

± 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results 22 



 

 

suggest in the importance of the sunlit/shaded fraction and canopy structure in understanding and 23 

interpreting PRI. 24 

 25 

Highlights: 26 

 Demonstrating PRI responses to illumination conditions and viewing geometry at leaf 27 

and canopy level. 28 

 Validating the capability of the two-layer Analytical Canopy Reflectance Model for PRI 29 

simulations in a cornfield at different growth stages.  30 

 Investigating how canopy structure associated with variable fraction of sunlit/shaded 31 

leaves affect the PRI values. 32 

 33 

Keywords: hyperspectral, two-layer Analytical Canopy Reflectance Model (ACRM), 34 

photochemical reflectance index (PRI), cornfield 35 
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1. INTRODUCTION 37 

Remotely sensed spectral bio-indicators have the potential to play a critical role in 38 

monitoring and modeling processes in time and space for our Earth’s ecosystems, including the 39 

exchange of carbon between the biosphere and the atmosphere. This is because uncertainties 40 

exist in how ecosystems will function and what feedbacks to expect, especially under 41 

disturbances induced by the changing climate (Garbulsky et al., 2011; Middleton et al., 2011). 42 

One of the widely used concepts to model carbon assimilation by plants is the light use 43 

efficiency (LUE) model (Monteith, 1972; Monteith, 1977). This approach describes carbon 44 

assimilation, in the form of gross or net primary productivity (GPP, NPP), as the product of the 45 

absorbed photosynthetically active radiation (APAR) and LUE.  Previous studies have shown 46 

that LUE can vary based on vegetation type, environmental conditions, and temporal resolution 47 

of the observations (Anderson et al., 2000; Garbulsky et al., 2011; Gower et al., 1999; King et 48 

al., 2011; Middleton et al., 2011; Peñuelas et al., 2011). 49 

 The importance of accurate LUE estimation has been emphasized in recent studies (e.g., 50 

(Lin et al., 2011; Peñuelas et al., 2011), reporting that errors in LUE are a major contributor to 51 

biases in annual carbon assimilation estimates.  Current tools and methods developed for LUE 52 

estimation usually utilize a look-up table of maximum possible LUE, which is then downscaled 53 

by an adjustment coefficient determined using meteorological data (e.g., air temperature and 54 

VPD) to account for non-optimal environmental effects (Law and Waring, 1994; Mahadevan et 55 

al., 2008; Prince and Goward, 1995; Xiao et al., 2004).  This approach is used for the satellite 56 

data product available from the Terra and Aqua Moderate Resolution Imaging 57 

Spectroradiometers (MODIS), the MOD17 GPP product (Heinsch et al., 2003; Heinsch et al., 58 

2006).  However, with this approach, errors are usually introduced into LUE estimates due to 59 



 

 

uncertainties about the fixed values within the look-up table and the meteorological data used for 60 

scaling factors. Moreover, these meteorological data usually have a much larger footprint than 61 

the area of interest, and hence, are not always representative for local LUE (Middleton et al., 62 

2011). On the other hand, a spectral bio-indicator directly derived from vegetation optical 63 

properties has been shown capable of providing useful estimates of LUE without needing 64 

ancillary information or relying on meteorological data (Garbulsky et al., 2011; Hall et al., 2011; 65 

Huemmrich et al., 2009; Middleton et al., 2009; Middleton et al., 2011; Peñuelas et al., 2011). 66 

The LUE of plants is closely linked to the reversible photoprotective responses of the 67 

foliar xanthophyll pigment cycle to illumination conditions, especially as induced by saturating 68 

mid-day irradiances. These responses are expressed by a spectral bio-indicator, the 69 

Photochemical Reflectance Index (PRI; (Gamon et al., 1990; Gamon et al., 1992; Gamon et al., 70 

1997; Peñuelas et al., 1995). This PRI information can be used to model the down-regulation of 71 

photosynthesis (Demmig-Adams and Adams III, 1996). The PRI utilizes  a narrow 72 

physiologically active green band   centered at 531 nm and a reference band most typically 73 

centered at 570 nm, in the form of a normalized difference index (i.e., [ρ531-74 

ρ570]/[ρ531+ρ570]). The PRI has been increasingly used and examined for its correlation with 75 

LUE across various vegetation types and scales (Cheng et al., 2009; Coops et al., 2010; Filella et 76 

al., 1996; Gamon et al., 1993; Gamon et al., 1992; Gamon et al., 1997; Garbulsky et al., 2011; 77 

Garbulsky et al., 2008; Hall et al., 2011, 2012; Hilker et al., 2011; Hilker et al., 2012; Inoue et 78 

al., 2008; Middleton et al., 2009; Middleton et al., 2011; Nichol et al., 2002; Peñuelas et al., 79 

1995; Peñuelas and Inoue, 2000; Peñuelas et al., 1997). 80 

 However, studies have also  shown that various factors  affect the remote sensing-based 81 

PRI:LUE relationship at canopy or ecosystem scales, including viewing geometry, canopy 82 



 

 

structure, leaf area index (LAI), soil background, pigment  content  and shadow fraction (Barton 83 

and North, 2001; Cheng et al., 2009; Drolet et al., 2005; Gamon et al., 2001; Hall et al., 2008; 84 

Hernández-Clemente et al., 2011; Hilker et al., 2008a; Hilker et al., 2008b; Middleton et al., 85 

2009; Nichol and Grace, 2010; Sims and Gamon, 2002; Sims et al., 2006; Stylinski et al., 2002).  86 

Furthermore, previous studies have also shown the importance of taking both sunlit and shaded  87 

foliage into account to explain PRI behaviors at the canopy level, since sunlit foliage is more 88 

likely to experience high light-induced environmental stress, and to have lower LUE, and hence, 89 

lower PRI values (Cheng et al., 2009; Cheng et al., 2010; Hall et al., 2008; Hilker et al., 2008b; 90 

Middleton et al., 2009; Peñuelas et al., 1995). It follows that we must have more understanding 91 

about the relative roles of sunlit and shaded foliage in canopies, and associated canopy structure, 92 

to improve our knowledge regarding PRI:LUE relationships. Radiative Transfer (RT) models 93 

provide a powerful tool to study this topic since they are designed to quantitatively examine 94 

changes in vegetation optical properties with leaf biochemical and canopy biophysical properties 95 

(Cheng et al., 2006; Jacquemoud et al., 1996; Verhoef, 1984; Zarco-Tejada et al., 2003; Zhang et 96 

al., 2011). 97 

 Canopy PRI was studied for water stress detection using the PROSPECT leaf model 98 

linked with the SAILh and FLIGHT canopy RT models to produce a non-stressed version of the 99 

PRI in two tree-structured orchards  and a maize field (Suárez et al., 2009). In a more recent 100 

study, the leaf model LIBERTY was coupled with the canopy model INFORM to study PRI as a 101 

physiological stress indicator in conifer forests (Hernández-Clemente et al., 2011). Both studies 102 

focused on PRI acquired at near nadir angles. Cheng et al. (2010) utilized in situ leaf optical 103 

properties coupled with a Markov chain Analytical two-layer Canopy Reflectance Model 104 

(ACRM; (Kuusk, 1995a, b, 2001) to simulate nadir and directional PRI at the canopy level in a 105 



 

 

cornfield, which was compared and validated with in situ canopy PRI observations. That study 106 

showed that ACRM successfully simulated PRI under various viewing geometries for a corn 107 

crop in the early vegetative stage without noticeable environmental stressors present, and 108 

explored how several canopy structure parameters affected PRI values. The ACRM-simulated 109 

PRI showed the best agreement with in situ values when the model was run in a two layer 110 

simulation mode, using leaf optical properties from sunlit leaves as the upper layer and shaded 111 

leaves as the lower canopy (Cheng et al., 2010). In the current study, we took a step further to 112 

examine the robustness of the same algorithm to simulate PRI through three different growth 113 

stages for a corn crop, examining early vegetative, fully mature, and senescent canopies.  Our 114 

objective was to determine whether the directional PRI responses previously observed for a 115 

young, vigorous canopy also continue to be present throughout the growing season, and to 116 

characterize and evaluate them. We also investigated how the vertical distribution of sunlit and 117 

shaded leaves affect an important structure-related variable, the canopy sunlit/shaded foliage 118 

ratio, and associated canopy PRI values. 119 

 120 

2. Methods 121 

2.1. Study Site and Field Data Collection 122 

During the summer of 2010, field campaigns were conducted on a corn crop (Zea mays 123 

L.)   in an experimental cornfield at the Optimizing Production Inputs for Economic and 124 

Environmental Enhancement (OPE3) site  (39.0304°N, 76.8458°W) maintained by the USDA 125 

Beltsville Agricultural Research Center (BARC)  in Beltsville, Maryland, U.S.A.  Measurements 126 

were acquired on three dates representing three different growth stages:   an early vegetated 127 

canopy when plants had nine fully expanded leaves (V9) and were ~1 m tall on 07/01; a fully 128 



 

 

mature canopy having 13-15 fully expanded leaves at ~2 m tall in the early reproductive phase 129 

(VT) on 07/15; and an early senescent crop (~2 m tall) at the advanced reproductive development 130 

stage (R4) on 08/09.  Canopy and leaf level measurements were taken along a 100-m north-south 131 

direction transect in the middle of the field to minimize disturbance and to maintain 132 

representativeness of the data. Hyperspectral reflectance (~1.5 nm Full Width Half Maximum; 133 

FWHM) was obtained for vegetation at both leaf and canopy levels and on bare soil using an 134 

USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, FL, USA) with a 135 

bare fiber. In situ leaf reflectance observations were acquired directly adjacent to the adaxial leaf 136 

surfaces. The leaves were excised on the next day, and a Li-Cor 1800-12 integrating sphere (Li-137 

Cor, Lincoln, NE, USA) paired with a spectroradiometer (FieldSpec, ASD Inc., Boulder, CO, 138 

USA) was utilized to determine transmittance from the leaf adaxial surfaces in the laboratory. At 139 

the canopy level, reflectance spectra were acquired at eight different relative azimuth angles (ψ, 140 

0° to 315° relative to the sun, at 45° increments) coupled with three different view zenith angles 141 

(θv)-- 30°, 45°, 60° (obtained at 1.3, 0.75, 0.44 m above the canopy, respectively, to provide a 142 

consistent center of the field of view). Nadir (θv = 0°; ψ = 0°) observations were acquired above 143 

the canopy at a height of approximately 1 m. This was accomplished by placing the fiber optics 144 

from a height-adjustable pole-mount, where a custom-made fixture was designed to position the 145 

instrument at a desired view zenith angle and relative azimuth angle. Soil background reflectance 146 

was taken on bare soil also approximately 1 m above the surface at nadir. Measurements were 147 

taken between local time 9 am to 4 pm, during which the solar zenith angle (θs) varied between 148 

16.6° and 51.2° across the season. Crop LAI was also measured with a Li-Cor LAI-2000 plant 149 

canopy analyzer (Li-Cor, Lincoln, NE, USA). More detailed information regarding field data 150 

collections can be found in Cheng et al. (2010). 151 



 

 

NOTE: The mention of trade names of commercial products in this article is solely for the 152 

purpose of providing specific information and does not imply recommendation or endorsement 153 

by the U.S. Department of Agriculture 154 

2.2. Models and Simulation Methods 155 

In this study, the canopy model ACRM (Kuusk, 1995a, b, 2001) was utilized to simulate 156 

PRI.  This RT canopy model is equipped with an enhanced Markov chain bidirectional gap 157 

probability function that has been utilized in various studies using  forward and inversion modes 158 

to validate and/or to estimate plants biochemical properties at leaf and/or canopy level (Cheng et 159 

al., 2010; Cheng et al., 2006; Fang et al., 2003; Houborg et al., 2009; Houborg et al., 2011). In 160 

our previous study, in which ACRM successfully simulated PRI for a young corn canopy, 161 

ACRM was set to run in its forward mode utilizing in situ leaf and soil background spectra to 162 

simulate canopy spectra at  various viewing geometry (θv,, ψ) configurations (Cheng et al., 163 

2010).  PRI was derived from the ACRM-simulated canopy reflectance spectra, and compared 164 

with the PRI derived from in situ canopy reflectance spectra.  In this study, we followed the 165 

procedures presented in Cheng et al. (2010; 2011) and ran the model in two different modes: (i) 166 

with optical properties of sunlit leaves (only) in a single layer, or (ii) with both sunlit and shaded 167 

leaves in two layers, where the shaded layer laid below the sunlit layer.  PRI was then derived 168 

from ACRM-simulated spectra and compared, as before, with PRI derived from in situ canopy 169 

reflectance spectra for validation. Values of other essential input parameters for the model are 170 

summarized in Table 1. These values came from either ancillary field measurements (e.g., LAI) 171 

or were decided based on previous studies (Cheng et al., 2010; Cheng et al., 2006; Fang et al., 172 

2003; Houborg et al., 2009; Jacquemoud, 1993; Kuusk, 2001; Zarco-Tejada et al., 2003). 173 



 

 

In Cheng et al. (2010; 2011), a sensitivity analysis was performed on several canopy 174 

structure parameters to investigate their effects on PRI simulations. The important influence of 175 

LAI on PRI simulations was reported. This study extends our progress and investigates how the 176 

vertical distribution and partitioning of LAI between the sunlit upper and the shaded lower 177 

canopy layers affect PRI simulations.  In our earlier studies, when ACRM was set to run in the 178 

one layer mode, the LAI of the upper canopy was assumed to represent the total LAI, or 100%, 179 

such that the LAI fractions in upper/lower layers were 100% and 0% (i.e., 100/0).  Likewise, 180 

when ACRM was set to run in the two layer mode, the LAI fractions of the upper and lower 181 

layers were assumed to equal half of the total LAI, (i.e., 50/50). In the current study, a sensitivity 182 

analysis was performed by changing the ratio of sunlit upper/shaded lower layer LAI values in 183 

10% increments from 100/0 (fully sunlit) to 10/90 (mostly shaded). 184 

 185 

3. RESULTS 186 

3.1. In situ Leaf and Canopy Observations 187 

Leaf-level PRI values derived from in situ leaf reflectance are summarized in Figure 1 as 188 

mean ± standard error (SE). PRI for sunlit leaves consistently exhibited lower values than shaded 189 

leaves on all three dates (ANOVA; n=60 for each day; 07/01, p<0.0001; 07/15, p=0.0003; 08/09, 190 

p=0.001).  Average PRI values varied from -0.009 to +0.005 for sunlit leaves, and consistently 191 

exhibited negative values in the afternoons throughout the growing season.   In contrast, mean 192 

PRI values for shaded leaves were always positive, varying from +0.002 to +0.022. PRI also 193 

showed higher mean values in the morning (AM) than in the afternoon (PM) on the two dates 194 

dominated by green foliage before senescence, especially for sunlit leaves (n=30, p<0.001 for 195 

both days).  Among the three growth stages, PRI values were significantly higher for shaded 196 



 

 

leaves (AM and PM) and sunlit leaves (AM) in the mature VT canopy (July 15) than on either 197 

the early (V9) or later season (R4) growth stages (n=30, p<0.0001).   At senescence, no clear 198 

differences were observed between the morning and the afternoon (n=30, p=0.6 for sunlit; 199 

p=0.48 for shaded leaves) but the pattern of higher PRI values for shaded vs. sunlit leaves was 200 

maintained.   201 

At the canopy level, in situ PRI values were plotted as mean ± SE against viewing 202 

geometry (θv, ψ) for the three growth stages in Figure 2.  The pattern obtained at leaf level (Fig. 203 

1) for higher PRI at the VT stage (July 15) was maintained at the canopy level (-0.02 to +0.01) 204 

when viewed over a range of view angles (θv , 0o, 30o, 45o, and 60o). Lower PRI values (-0.03 to 205 

-0.01) occurred at both early (Fig.2, 07/01) and late stages (Fig.2, 08/09), which were similar in 206 

their PRI responses at the smaller view zenith angles (0o, n=48, p=0.44; 30°, n=128, p=0.16; 45o, 207 

n=128, p=0.06) as compared to mid-season VT stage.  However, early and late growth stages 208 

were differentiated by PRI values obtained at the extreme view, θv = 60o (early > late, n= 128, 209 

p=0.0011).   PRI values at all azimuth positions increased as a function of   θv.  For example, 210 

increases in the mean PRI at the coldspot (ψ =180o) for the VT canopy were: -0.003±0.005 at 211 

30o, 0.0±0.003 at 45o, and +0.009±0.006 at 60o.  This contrasts with the negative PRI obtained at 212 

nadir (-0.02±0.003), which would be interpreted as indicating greater physiological stress than 213 

was determined at any other view.  The general pattern exhibited for all measurement geometries 214 

(8 ψ at 3 θv ) was for PRI values to be lower when θv was close to 0° and highest when ψ ≈  180° 215 

at any θv, highlighting the dependence on viewing geometries.   Together, these results (Figs. 1, 216 

2) demonstrate the influence of diurnal and directional effects on PRI values retrieved from a 217 

cornfield.  218 



 

 

3.2. ACRM-simulated PRI 219 

Reflectance spectra were simulated as output from the ACRM.  PRI values were 220 

calculated from those and compared with in situ PRI for validation purposes in Figure 3,  where 221 

PRI values from both field measurements and simulations were plotted against θv and ψ (Fig. 3 222 

a,c,e).  ACRM-simulated PRI successfully captured the responses that in situ PRI exhibited to θv 223 

and ψ (Fig. 3 a,c,e), producing lower values when ψ was close to 0° and higher values when ψ 224 

was close to 180° at all θv on all three observation days.  When the simulations were performed 225 

with sunlit leaves only, considerable underestimations as compared to in situ PRI values were 226 

observed (Fig. 3 a,c,e). The PRI underestimations were more pronounced on the young V9 crop 227 

(July 1) and the senescent R4 crop (August 9), but also occurred at smaller θv = 30o for the 228 

mature VT crop.  On the contrary, the differences between simulated and in situ values were 229 

much smaller, and in most cases not significant, when the simulation included both sunlit and 230 

shaded leaves (Figure 3a,c,e). Correlations between simulated vs. measured values are presented 231 

in Fig. 3b,d,f (panels on the right). The fully mature VT canopy (July 15, Fig. 3d) exhibited the 232 

highest correlation between in situ values and simulations under both scenarios:  when both 233 

sunlit and shaded leaves were included (r = 0.87) and when only sunlit leaves were used (r = 234 

0.84).  The comparisons for the V9 canopy were also strong (r = 0.78, both sunlit and shaded 235 

leaves; r = 0.80, sunlit leaves only), although the sunlit (only) set is clearly offset from the 1:1 236 

line.  Results were weaker in the senescent R4 stage (r = 0.65, both sunlit and shaded leaves; r = 237 

0.52, sunlit leaves only), with high variability-- especially for the sunlit dataset. Therefore, 238 

simulated PRI using both sunlit and shaded leaves (Fig. 3) yielded better correspondence (closer 239 

to the 1:1 line) on all three dates than simulations with only sunlit leaves. Statistics of 240 

comparisons between in situ and simulated PRI are summarized in Figure 4.  For all three days, 241 



 

 

when compared with in situ values, simulated PRI using both sunlit and shaded leaves (Fig. 4) 242 

generated significantly smaller root mean square error (RMSE) than simulations with sunlit 243 

leaves only (Fig. 4). Among the three days, simulated PRI showed the best agreement with in 244 

situ values at the VT stage, as evidenced by higher correlation coefficients (r≥ 0.84) and smaller 245 

RMSEs (≤ 0.0096) when the canopy was mature (Fig. 4).  246 

The performance of ACRM-simulated PRI was further examined by calculating the 247 

difference from in situ values, which is summarized in Figure 5. The thick black line displayed in 248 

Fig. 5 indicates no (zero) difference between in situ and simulated values. Simulations performed 249 

using only sunlit leaves produced underestimations of field values, as shown by negative values 250 

(Fig. 5a). The largest underestimates (~0.03) were obtained at the two smaller view angles, nadir 251 

(0o) and θv=30°. The only simulations with sunlit leaves alone that agreed with field 252 

measurements occurred for θv=60° in the forward scattering direction (ψ = 135° to 270°), for the 253 

fully green and mature mid-season VT canopy (Fig. 5a).  When both sunlit and shaded leaves 254 

were used in simulations, the differences were much closer to zero (Fig. 5b), providing better 255 

agreements with in situ values under all observation and growth conditions.  However, 256 

simulations done using both sunlit and shaded leaves for the VT canopy showed a small positive 257 

bias for part of the ψ range at all θv, whereas the differences appeared to scatter around zero at 258 

the other two growth stages (Fig. 5b).  259 

3.3. Canopy Structure and PRI Simulations 260 

The importance of taking optical properties of both sunlit and shaded leaves into account, 261 

as well as their relative proportions in the canopy, expressed as a canopy-level ratio, was further 262 

investigated using the mid-season VT canopy data. Figure 6 shows how the ACRM-simulated 263 

PRI values changed as a function of the sunlit/shaded canopy ratio and viewing geometry, for a 264 



 

 

corn crop having LAI = 2.48. Columns with lighter shading indicate higher sunlit/shaded 265 

fractions.  In the modeling scheme, a higher sunlit/shaded canopy ratio describes a canopy that is 266 

dominated by sunlit leaves, and therefore, optical properties of sunlit leaves influence the 267 

simulated canopy reflectances significantly more. On the contrary, a darker tone (Fig. 6) 268 

indicates lower sunlit/shaded canopy ratios were used to simulate situations where shaded leaves 269 

contributed more to the total canopy reflectance. Clearly, the PRI values obtained at any θv and 270 

ψ  decrease as the sunlit/shaded canopy ratio favors more sunlit foliage (Fig. 6).   A lower PRI 271 

value would indicate greater environmental stress, and reduced LUE.    Therefore, for the same 272 

canopy LAI and growth stage, different inferences about LUE could be made based on the 273 

observed PRI, depending on viewing geometry and the inherent canopy structure profile.  These 274 

results help explain why there have been so many confounding factors that influence the PRI of 275 

canopies that have been reported by various researchers. 276 

These simulations were also directly compared with in situ PRI values (Figure 7), to 277 

reveal  a linear shift away from the 1:1 line for the extreme cases, and displaying a general 278 

underestimation for the full sun (100/0) case, especially at lower PRI values, and a general 279 

overestimation for the mostly shaded (20/80) case. Statistics for the correlation coefficients and 280 

RMSEs are summarized in Figure 8, indicating the highest correlations paired with the lowest 281 

RMSE were associated with two groups in the mid-range (70/30, 60/40).  The slope and offset of 282 

the regression lines (Figure 9), show a consistent decline for the slope (parameter “a”) as the 283 

sunlit/shaded canopy ratio increasingly favored more shaded foliage, whereas the offset 284 

(parameter “b”) increased. Since the best agreement between simulations and in situ observations 285 

was achieved for a 60/40 ratio, we can assume our field measurements were acquired at or near 286 



 

 

the 60/40 sunlit/shaded canopy conditions.  Thus, our original assumption of a 50/50 ratio was 287 

not the optimal condition for the mature VT canopy in 2010. 288 

 289 

4. Discussion 290 

The PRI was developed to track the reversible changes in the photoprotective xanthophyll 291 

cycle induced by light intensity changes through a diurnal cycle, (Gamon et al., 1992; Peñuelas 292 

et al., 1995). Subsequently, additional environmental stresses have been shown to influence  the 293 

pH of the chloroplast stroma, affecting the xanthophylls cycle and associated PRI values, such as 294 

drought and cold temperatures (Demmig-Adams and Adams, 2000; Müller et al., 2001; Pfündel 295 

and Bilger, 1994). Studies have also shown correlations between PRI and other 296 

physiological/morphological changes, for instance, the carotenoids and chlorophyll ratio (Filella 297 

et al., 2004; Sims and Gamon, 2002). In our previous study, we successfully demonstrated that in 298 

situ leaf optical properties coupled with ACRM could simulate PRI for a young, homogeneous 299 

corn canopy, still growing and in the vegetative growth stage.  Here, we extended our study to 300 

simulate PRI for a corn crop during three different growth stages during the 2010 growing 301 

season.   302 

4.1. In situ PRI at Leaf and Canopy Level 303 

First of all, the results presented here confirm our previous studies showing that shaded 304 

leaves captured in the coldspot of canopy directional reflectances have higher PRI values than 305 

sunlit leaves (Cheng et al., 2010; Gamon et al., 1990; Middleton et al., 2009; Peñuelas et al., 306 

1995), and we extended those observations to examine the PRI responses through a growing 307 

season in the same experimental cornfield location as the previous study.  Higher PRI values in 308 



 

 

shaded foliage and canopy sectors indicate that the intensity of xanthophyll-regulated 309 

photoprotection is lower than in sunlit leaves and canopy segments which are more likely to 310 

experience high light stress and exhibit lower PRI values.  Furthermore, previous studies have 311 

shown correlations between leaf pigments (e.g. carotenoids/chlorophyll ratio) and PRI and the 312 

changes in PRI values could be related to leaf development and aging during the growing season 313 

(Garbulsky et al., 2011; Peñuelas et al., 2011).   314 

Leaf level PRI for the “green” canopies (i.e., the V9 through VT growth stages) exhibited 315 

lower PRI values (i.e., greater stress) during afternoons after several hours of high irradiance 316 

exposure, than for mornings (Fig. 1). This pattern was also observed in   our V10 dataset 317 

acquired in the same field in 2008 (Cheng et al., (2010), although the 2008 values were much 318 

higher, implying lower relative stress responses, which were very likely due to an abnormally 319 

wet spring that year.  Higher PRI values were also obtained in shaded leaves vs. sunlit leaves in 320 

both morning and afternoon observations in the chlorophyll-dominated growth stages.  For the 321 

senescent canopy, however, lower PRI values were found in shaded and sunlit leaves all day 322 

long.  These lower mean PRI values for the senescent growth stage discriminated between 323 

shaded and sunlit (shaded > sunlit) but not AM vs. PM due to high variability (Fig. 1).    324 

Nevertheless, the importance of AM vs. PM observations in studying PRI vs. LUE or using PRI 325 

to determine LUE needs to be emphasized. The daily PRI averages followed the expected 326 

pattern:   VT > V9 > R4, but the daily variation became large, as compared with either morning 327 

or afternoon observations.  On the other hand, considerable error in estimating daily PRI values 328 

would be incurred if only sunlit foliage was considered on any of the dates examined, but 329 

especially for the mature, mid-season VT crop that had the largest sunlit vs. shaded PRI 330 



 

 

difference.  These findings should serve as a caution when utilizing daily average PRI values in 331 

model simulations of LUE at the ecosystem scale.   332 

The canopy PRI  observations showed substantial dependence on  viewing geometry 333 

(Fig. 2), similar to results reported in our previous study (Cheng et al., 2010).  PRI values were 334 

higher when the canopy was viewed at larger, oblique θv since more shaded foliage and less soil 335 

background contamination was captured. Secondly, PRI exhibited higher values when ψ was at 336 

the coldspot, close to 180° where the shaded dominated the field of view, and lower values when 337 

ψ was close to the hotspot at 0° (broadly including 45o, 315°) where it was associated with the 338 

sunlit segment of the canopy (Fig. 2).  This is a consistent pattern that has been observed in 339 

multiple years under different conditions for the cornfield and in forests (Hall et al., 2008; Hilker 340 

et al., 2008b; Huemmrich et al., 2009; Middleton et al., 2009). When utilizing spaceborne data, 341 

the observations are not always acquired at nadir (e.g., EO-1 Hyperion, Terra/Aqua MODIS). 342 

Therefore, this confounding effect needs to be addressed to retrieve meaningful information of 343 

plant physiological conditions from non-nadir as well as nadir PRI values. Previous studies 344 

conducted at a Douglas fir forest in British Columbia, Canada, also reported that PRI exhibited 345 

similar dependency to viewing geometry (Hall et al., 2008; Hilker et al., 2008b; Middleton et al., 346 

2009), and are supported by a recent satellite study using off-nadir directional observations (Hall 347 

et al., 2011; Hilker et al., 2011).  348 

PRI values at both leaf and canopy levels  expressed less variance (e.g., smaller SE) in 349 

the young, homogeneous, unstressed V9 canopy  (Figs. 1,2), with more variability accruing 350 

through the season as the crop aged, weathered, and experienced various unfavorable 351 

environmental conditions.  352 



 

 

4.2. Simulation Performance and Differences in Previous Study 353 

 ACRM has been shown to successfully simulate canopy PRI values and their 354 

dependency on viewing geometry with the current 2010 data and with the previous 2008 data.  355 

ACRM was able to deliver believable simulations when both sunlit and shaded leaves were used 356 

(Fig. 3).  However, when only sunlit leaves were included in the process, less agreement with 357 

field measurements was achieved and comparisons to in situ measurements produced higher 358 

RMSEs due to underestimation.  The agreement with in situ PRI values was better when the corn 359 

crop was dominated by green foliage from the actively growing, early vegetative through the 360 

mature, reproductive growth stages. When the corn crop approached the senescent stage, ACRM 361 

simulation was satisfactory, but agreed with in situ values the least well among our datasets. The 362 

early senescent R4 crop, which had a lower leaf layer in the canopy comprised of brown (dead or 363 

low chlorophyll) leaves coupled with a mixed green/brown  upper leaf canopy layer, exhibited 364 

relatively low PRI values (and high stress) in general, especially in the sunlit layer.  The 365 

increasing complexity of the foliage distribution at this highly variable stage presents a challenge 366 

for simulations.    367 

In our previous study, we showed that using sunlit and shaded leaves in the ACRM 368 

scheme can improve both the correlation and RMSE with in situ PRI values (Cheng et al., 2010).   369 

By considering the results from two field studies (2008, 2010), we can conclude that the most 370 

significant benefit  of adding shaded leaves  as the lower canopy layer in ACRM was to improve 371 

RMSE relative to  field observations (see Fig.4 and Cheng et al., 2010).    When ACRM was  run 372 

in the one layer mode using only the optical properties of sunlit leaves, the simulated PRI 373 

showed satisfactory correlations with in situ values but  had a significant offset, indicating an 374 

underestimate that could be incorrectly interpreted as a higher than actual physiological stress 375 



 

 

response. This is an important issue since misinterpretation of PRI values will lead to significant 376 

errors in LUE and GPP estimates. This point was emphasized by calculating the difference 377 

between in situ and simulated PRI values for various viewing geometry and dates (Fig. 5) where 378 

simulations performed with only sunlit leaves obviously produced most of the underestimations 379 

as negative values (Fig. 5a).  Small θv (nadir at 0o and 30o) had larger discrepancies than larger 380 

off-nadir views (45o, 60o), as compared with measurements.  This is consistent with  our previous 381 

study (Cheng et al., 2010),  due in part to less soil background contamination at  oblique angles.  382 

Among the three dates, discrepancies between field observations and “sunlit only” simulations 383 

were the smallest for the mature VT canopy (July 15, 2010), especially notable for  θv = 60° (X), 384 

suggesting that at this oblique angle, sunlit leaves might dominate the field of view for a fully 385 

leafed out, green and erectophile canopy.  We also note that the benefit of adding a shaded lower 386 

leaf layer for the VT canopy in the ACRM scheme, while advantageous, was less than on the 387 

other dates.  This may be because the fully mature crop exhibited more sunlit leaves, greater 388 

canopy closure, and/or a well-developed vertical LAI profile.  The latter factor has been shown 389 

to be temporally variant based on the growth stages of corn canopies (Ciganda et al., 2008). 390 

4.3. Sunlit/Shaded Canopy Ratio 391 

We tested various cases of variable sunlit/shaded canopy ratios, using our VT mature 392 

canopy dataset, for which the ACRM-simulated PRI values (for a given θv and ψ) were expected 393 

to increase when the sunlit/shaded ratio changed from 100/0 to 10/90. Those simulations (Fig. 6) 394 

duplicated those from the earlier study (Cheng et al. 2010):  (1) the highest PRI values occurred 395 

at the coldspot (ψ = 180o) and the lowest at the hotspot (ψ = 0o); and (2) the PRI values were 396 

higher when θv increased from 30° to 60°. Therefore, in the ACRM simulations, changes to the 397 



 

 

sunlit/shaded ratio affected the canopy PRI responses expected, but not the sensitivity to viewing 398 

geometry.  399 

However, changes in the canopy structure could affect PRI values, causing 400 

underestimation or overestimation of “true” PRI values. When simulations were done with sunlit 401 

leaves only (100/0 in Fig. 7),  most of the data points fell below the 1:1 line,  underestimating, 402 

“true” field values.  After adding optical properties of shaded leaves in the simulation, even for 403 

the 80/20 case, the data points moved closer to the 1:1 line and generated a ~50% improvement 404 

in RMSE (Fig. 7). On the other hand, when even more shaded leaves than sunlit leaves were 405 

included in the simulation (e.g., 40/60 and 20/80, Fig. 7), the simulated PRI moved up and over 406 

the 1:1 line, and generated higher RMSE due to overestimation.  For this dataset, the simulated 407 

60/40 sunlit/shaded canopy ratio appeared to have the best agreement with field measurements, 408 

and indicates that this was the likely field condition at that growth stage in 2010. Since these 409 

simulations used a homogeneous, fixed LAI (at 2.48), the sunlit  dominated groups (e.g., 100/0 410 

and 80/20) might indicate relatively more open canopies, made possible by longer stems and/or 411 

wider rows that put space between the leaves (since the number of leaves per plant is fixed).  412 

Likewise, the extreme case for a mostly shaded 20/80 canopy has a more compact, closely 413 

spaced leaf arrangement along a short stem, and/or a closed canopy in narrower rows. 414 

Results summarized in Tab. 2 also confirm the importance of adding shaded leaves into 415 

the simulation scheme, since even when using a 80/20 ratio as the input, significant improvement 416 

in RMSE (~30% to 50%) can be achieved.  For the mature VT canopy, even though the 60/40 417 

ratio appeared to be optimal by generating the best agreement of the sunlit/shaded ratio to in situ 418 

measurements (r = 0.87; RMSE = 0.0045), the performance using 50/50 was still quite close (r = 419 

0.87; RMSE = 0.0048).  Furthermore, after finding that the 50/50 sunlit/shaded ratio was not the 420 



 

 

optimal value to generate the best simulations for the mature VT canopy, we investigated the 421 

issue for the other two dates in 2010 and one V10 dataset acquired on August 1, 2008 (Tab. 2).  422 

For all three of these other datasets, the 50/50 sunlit/shaded ratio did appear to be optimal for 423 

simulating canopy PRI, based on better statistical performances (higher correlation coefficients 424 

and lower RMSEs).  Therefore, while additional canopy structure information might improve 425 

PRI values interpretation and simulation in a cornfield using ACRM, the 50/50 sunlit/shaded 426 

ratio will generate more than satisfactory results for most of the cases.  427 

These results indicate that the sunlit/shaded ratio, a structure-based parameter, may 428 

change within a growing season.   Therefore, this sensitivity analysis highlights the importance 429 

of canopy structure in simulating and understanding PRI. The implication is that since different 430 

vegetation types have different canopy structures (e.g., forests vs. crops vs. shrubs), our on-going 431 

and future research will apply this modeling scheme to different vegetation functional types. 432 

More importantly, most approaches have assumed that the sunlit upper canopy is the major 433 

contributor and regulator of GPP/NPP, and that either the shaded component can be largely 434 

ignored or the whole system is assumed to operate in one mode (e.g., sunlit) for total canopy 435 

foliage amount defined by LAI.  Our results suggest that only taking sunlit leaves into account 436 

would lead to underestimation of canopy PRI values, implying greater than actual stress levels 437 

and leading to underestimates of LUE and GPP.  Previous studies have also recognized the 438 

importance of separating sunlit and shaded leaves for modeling photosynthetic activities from 439 

leaf to canopy level (Chen et al., 1999; De Pury and Farquhar, 1997; Wang and Leuning, 1998) 440 

mostly due to the nonlinear response of leaf carbon assimilation to light intensity. Adding 441 

spectral information about the shaded canopy foliage is critical for improving our understanding 442 

about canopy physiological processes, and our ability to simulate PRI and related parameters. 443 



 

 

Improvement in understanding PRI information will potentially reduce uncertainties in LUE 444 

estimates using remote sensing observations and advance carbon uptake monitoring capabilities.  445 

 446 

5. SUMMARY 447 

In this study, we examined the capability of coupling in situ leaf optical properties and 448 

ACRM to simulate canopy level PRI at various growth stages of a corn crop. ACRM-simulated 449 

canopy PRI values were closer to field measurements when both sunlit and shaded leaves were 450 

utilized in the scheme. The performance of the model was greatly improved when the crop was 451 

dominated by green foliage during the vegetative and mature reproductive stages. The least 452 

satisfactory results were found when the corn crop reached the senescent stage. The significance 453 

of taking both sunlit and shaded leaf segments into account for canopy PRI studies was 454 

presented. We further examined how variable sunlit/shaded canopy ratios affected the modeled 455 

results. Simulated canopy PRI values increased as the contribution from the shaded fraction 456 

increased (i.e., the sunlit/shaded ratio decreased).  The analysis suggested that canopy structure 457 

information might be needed to improve simulations or to interpret PRI. These findings also 458 

imply that canopy PRI investigations and simulations should be investigated for more plant 459 

functional types. 460 
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FIGURE CAPTIONS 679 

Figure 1. PRI values derived from in situ leaf reflectance for the sunlit () and shaded () 680 

leaves used as input data in the simulations and daily average () on three field days in 2010. 681 

Values are shown as mean ± SE. 682 

Figure 2. In situ canopy PRI values from field measurements are shown for nadir (θv=0°; ψ=0° ) 683 

and for three additional view zenith angles (θv=30°,45°,60°) which were coupled with eight 684 

relative azimuth angles (ψ=0° to 315° with 45° increment) on July 1st (), July 15th (), and 685 

August 9th () in 2010. Values are shown as mean ± SE.  The mature canopy was clearly 686 

differentiated from early and late canopies, with higher PRI values at any θv .  Early and late 687 

growth stages were similar at θv  = 30o and 45o, but were differentiated at θv  = 60o.  These results 688 

were used as validation data for simulations.   689 

Figure 3. Comparisons and regressions between simulated and in situ PRI values on three days 690 

during the 2010 growing season: (a)(b) July 1; (c)(d) July 15; and (e)(f) August 9. Simulations 691 

were performed using either sunlit leaves only () or both sunlit and shaded leaves (▲). Values 692 

are shown as mean ± SE. in (a)(c)(e).  In general, simulations agreed with field observations 693 

when both sunlit and shaded foliage were included. 694 

Figure 4. Summary chart of statistics representing all data collected on the three 2010 field 695 

dates, for simulations using either sunlit canopy only or both sunlit and shaded canopy sectors: 696 

(a) correlation coefficient (r) and (b) root mean square error (RMSE) relating in situ and 697 

simulated PRI values. 698 

Figure 5. Differences between values for in situ versus simulated PRI plotted against viewing 699 

geometry (θv and ψ) for the three growth stages in 2010. The black dashed line indicates zero 700 



 

 

difference between in situ and simulated values. Discrepancies indicate the error incurred in 701 

simulations. 702 

Figure 6. Changes in PRI values when 2-layer simulations were performed with various 703 

sunlit/shaded canopy ratios,  where the upper layer is sunlit and the lower layer is shaded. 704 

Simulations were done using parameters from the mature and green VT canopy, LAI = 2.48 on 705 

July 15, 2010.  Six sunlit/shaded ratio cases were investigated, as shown in the label, represented 706 

by increasingly darker grey tone as more shaded leaves are included.  The nadir case is included 707 

in the top panel. 708 

Figure 7. Correlations between in situ PRI measurements and PRI values simulated using 709 

various sunlit/shaded canopy ratios, for the mature VT canopy on July 15, 2010.  LAI = 2.48. 710 

Figure 8. Statistics for the correlation coefficient (r) and root mean square error (RMSE), 711 

relating in situ PRI measurements and simulated PRI values across various sunlit/shaded canopy 712 

ratios.  Based on the VT canopy (July 15, 2010; LAI = 2.48). 713 

Figure 9. Parameters of the regression line (y=ax+b) relating in situ and simulated PRI values, 714 

using various sunlit/shaded canopy ratios. Parameter “a” is the slope while “b” is the offset of the 715 

regression line.   Based on the VT canopy (July 15, 2010; LAI = 2.48). 716 

 717 

TABLE CAPTIONS 718 

Table 1. Value or range of parameters used as input to ACRM in this study. 719 

Table 2. Correlation coefficients (r) and root mean square errors (RMSE) relating in situ PRI 720 

measurements and ACRM-simulated PRI values using various sunlit/shaded canopy ratios are 721 

presented for three additional days:  an early 2008 growth stage and two 2010 growth stages.  722 
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Figure 1. PRI values derived from in situ leaf reflectance for the sunlit () and shaded () 725 
leaves used as input data in the simulations and daily average () on three field days in 2010. 726 
Values are shown as mean ± SE.  727 
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Figure 2. In situ canopy PRI values from field measurements are shown for nadir (θv=0°; ψ=0° ) 730 
and for three additional view zenith angles (θv=30°,45°,60°) which were coupled with eight 731 
relative azimuth angles (ψ=0° to 315° with 45° increment) on July 1st (), July 15th (), and 732 
August 9th () in 2010. Values are shown as mean ± SE.  The mature canopy was clearly 733 
differentiated from early and late canopies, with higher PRI values at any θv .  Early and late 734 
growth stages were similar at θv  = 30o and 45o, but were differentiated at θv  = 60o.  These results 735 
were used as validation data for simulations.    736 
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 738 
Figure 3. Comparisons and regressions between simulated and in situ PRI values on three days 739 
during the 2010 growing season: (a)(b) July 1; (c)(d) July 15; and (e)(f) August 9. Simulations 740 
were performed using either sunlit leaves only () or both sunlit and shaded leaves (▲). Values 741 
are shown as mean ± SE. in (a)(c)(e).  In general, simulations agreed with field observations 742 
when both sunlit and shaded foliage were included.  743 
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 744 
Figure 4. Summary chart of statistics representing all data collected on the three 2010 field 745 
dates, for simulations using either sunlit canopy only or both sunlit and shaded canopy sectors: 746 
(a) correlation coefficient (r) and (b) root mean square error (RMSE) relating in situ and 747 
simulated PRI values. 748 
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 750 
Figure 5. Differences between values for in situ versus simulated PRI plotted against viewing geometry (θv and ψ) for the three 751 
growth stages in 2010. The black dashed line indicates zero difference between in situ and simulated values. Discrepancies indicate 752 
the error incurred in simulations. 753 
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 754 
Figure 6. Changes in PRI values when 2-layer simulations were performed with various 755 
sunlit/shaded canopy ratios,  where the upper layer is sunlit and the lower layer is shaded. 756 
Simulations were done using parameters from the mature and green VT canopy, LAI = 2.48 on 757 
July 15, 2010.  Six sunlit/shaded ratio cases were investigated, as shown in the label, represented 758 
by increasingly darker grey tone as more shaded leaves are included.  The nadir case is included 759 
in the top panel.  760 
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 761 
Figure 7. Correlations between in situ PRI measurements and PRI values simulated using 762 
various sunlit/shaded canopy ratios, for the mature VT canopy on July 15, 2010.  LAI = 2.48.  763 

r = 0.85
RMSE = 0.0083

-0.05

-0.03

-0.01

0.01

0.03

-0.05 -0.03 -0.01 0.01 0.03

Si
m

ul
at

ed
 P

RI

in situ PRI

20/80

r = 0.87
RMSE = 0.0045

-0.05

-0.03

-0.01

0.01

0.03

-0.05 -0.03 -0.01 0.01 0.03

Si
m

ul
at

ed
 P

RI

in situ PRI

60/40

r = 0.86
RMSE = 0.0054

-0.05

-0.03

-0.01

0.01

0.03

Si
m

ul
at

ed
 P

RI

  

40/60

r = 0.86
RMSE = 0.0047

-0.05

-0.03

-0.01

0.01

0.03

Si
m

ul
at

ed
 P

RI

  

80/20

r = 0.87
RMSE = 0.0048

-0.05

-0.03

-0.01

0.01

0.03

Si
m

ul
at

ed
 P

RI

  

50/50

r = 0.84
RMSE = 0.0096

-0.05

-0.03

-0.01

0.01

0.03

Si
m

ul
at

ed
 P

RI

  

100/0



 

 

 764 
Figure 8. Statistics for the correlation coefficient (r) and root mean square error (RMSE), 765 
relating in situ PRI measurements and simulated PRI values across various sunlit/shaded canopy 766 
ratios.  Based on the VT canopy (July 15, 2010; LAI = 2.48). 767 
 768 

 769 
Figure 9. Parameters of the regression line (y=ax+b) relating in situ and simulated PRI values, 770 
using various sunlit/shaded canopy ratios. Parameter “a” is the slope while “b” is the offset of the 771 
regression line.   Based on the VT canopy (July 15, 2010; LAI = 2.48).  772 
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Table 1. Value or range of parameters used as input to ACRM in this study. 773 

Date July 1, 2010 July 15, 2010 August 9, 2010 

LAI 1.92 2.48 1.81 

Solar zenith angle (θs) 16.6° to 42.8° 18.1° to 45.3° 24.1° to 51.2° 

View zenith angle (θv) 0°, 30°, 45°, 60° 

Relative azimuth angle (ψ) 0° to 315° at 45° increments 

Relative leaf size 0.15 

Markov parameter 1.0 

Leaf angle distribution parameter ε = 0; θm = 0 
 774 
 775 
Table 2. Correlation coefficients (r) and root mean square errors (RMSE) relating in situ PRI 776 
measurements and ACRM-simulated PRI values using various sunlit/shaded canopy ratios are 777 
presented for three additional days:  an early 2008 growth stage and two 2010 growth stages.  778 

 100/0 80/20 60/40 50/50 40/60 20/80 

August 1, 2008 
r 0.71 0.80 0.85 0.86 0.84 0.82 

RMSE 0.019 0.009 0.006 0.004 0.006 0.007 

July 1, 2010 
r 0.80 0.77 0.78 0.78 0.75 0.68 

RMSE 0.023 0.010 0.007 0.005 0.006 0.007 

August 9,2010 
r 0.52 0.57 0.62 0.65 0.65 0.64 

RMSE 0.022 0.014 0.010 0.010 0.011 0.012 
 779 

 780 
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