NASA’s Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

William E. Larson
NASA-Kennedy Space Center

Martin Picard
Canadian Space Agency

Gerald B. Sanders
NASA- Johnson Space Center

Anthony Colaprete
NASA- Ames Research Center

Jacqueline Quinn
NASA- Kennedy Space Center

Richard C. Elphic
NASA- Ames Research Center

International Astronautical Congress
Naples Italy
October 2012

william.e.larson@nasa.gov
Our Evolving Understanding of the Moon and its Resources

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Integrated data sets from instruments on LRO support the existence of large quantities of water ice in the PSRs and in partially sunlit regions.

Synthetic Aperture Radar on Chandrayaan 1 returns data that is consistent with water ice in the PSRs.

Clementine's Bi-Static Radar suggest Water Ice in permanently shadowed regions near the poles.

Watson, Murray and Brown theorize that cold traps at the moon's poles may contain water ice.

LCROSS impacts Cabeus A and clearly detects significant quantities of water in the ejecta.

Apollo samples point to a dry Moon.

Neutron Spectrometer aboard Lunar Prospector detects elevated levels of hydrogen that correlates with permanent shadow.
LCROSS & LRO Definitively Prove Existence of Volatiles at the Lunar Poles

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

<table>
<thead>
<tr>
<th></th>
<th>Column Density (# m⁻²)</th>
<th>Relative to H₂O(g) (NIR spec only)</th>
<th>Concentration (%)</th>
<th>Long-term Vacuum Stability Temp (K)</th>
<th>UV/Vis</th>
<th>NIR</th>
<th>LAMP</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1.7e13±1.5e11</td>
<td></td>
<td>5.7</td>
<td>15</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O(g)</td>
<td>5.1(1.4)E19</td>
<td>1</td>
<td>5.50</td>
<td>106</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>5.8e13±1.0e11</td>
<td>0.1675</td>
<td>1.39</td>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S</td>
<td>8.5(0.9)E18</td>
<td>0.92</td>
<td>47</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3.3e12±1.3e10</td>
<td></td>
<td>0.79</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>5.0e11±2.9e8</td>
<td>0.48</td>
<td>135</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td>3.1(1.5)E18</td>
<td>0.0603</td>
<td>0.33</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.3e12±5.3e9</td>
<td></td>
<td>0.19</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>1.6(0.4)E18</td>
<td>0.0319</td>
<td>0.18</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄</td>
<td>1.6(1.7)E18</td>
<td>0.0312</td>
<td>0.17</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.1(1.0)E18</td>
<td>0.0217</td>
<td>0.12</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃OH</td>
<td>7.8(42)E17</td>
<td>0.1555</td>
<td>0.09</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>3.3(3.0)E17</td>
<td>0.0065</td>
<td>0.04</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>1.7(0.4)E16</td>
<td>0.0003</td>
<td>0.002</td>
<td>>300 K if adsorbed</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O (adsorb)</td>
<td>1.7(0.4)E16</td>
<td>0.0003</td>
<td>0.002</td>
<td>>300 K if adsorbed</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volatiles comprise possibly 15% (or more) of LCROSS impact site regolith
What’s the Next Step?

- We now know with certainty that there are volatiles at one spot on the moon.
- Comparison’s of orbital instrument data with the LCROSS plume seem to suggest that the water is not evenly distributed.
- Until we know the distribution and accessibility of the volatiles don’t really know if we have a usable resource.
- A “Ground Truth” surface mission is the next logical step.
- RESOLVE is the mission that NASA and the CSA are designing to answer these questions
RESOLVE Mission Requirements

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Primary Mission:
✓ Verify the existence of and characterize the constituents and distribution of water and other volatiles in lunar polar surface materials
 - Map the surface distribution of hydrogen rich materials (Neutron Spectrometer, Near-IR Spectrometer)
 - Extract 1m core sample with minimal loss of volatiles from selected sites (Drill/Auger Subsystem)
 ▪ to a depth of 1m
 - Heat multiple samples from each core to drive off volatiles for analysis (OVEN Subsystem)
 ▪ from 100°K to 473°K
 ▪ from 0 up to 100 psia (reliably seal in aggressively abrasive lunar environment)
 - Determine the constituents and quantities of the volatiles extracted (LAVA Subsystem)
 ▪ Hope to find and quantify H2, He, CO, CO2, CH4, H2O, N2, NH3, H2S, SO2
 ▪ Survive limited exposure to HF, HCl, and Hg

Secondary Mission:
✓ Demonstrate the ISRU Hydrogen Reduction Process to extract oxygen from lunar regolith
 - Heat sample to reaction temperature (OVEN Subsystem)
 ▪ from 473°K to 1173°K
 - Flow H2 through regolith to extract oxygen in the form of water (OVEN Subsystem)
 - Capture, quantify, and display the water generated (LAVA Subsystem)
Sample Acquisition –
Auger/Core Drill [CSA provided]
- Complete core down to 1 m; Auger to 0.5 m
- Minimal/no volatile loss
- Low mass/power (<25 kg)
- Wide variation in regolith/rock/ice characteristics for penetration and sample collection
- Wide temperature variation from surface to depth (300K to <100K)

Sample Evaluation –
Near Infrared Spectrometer (NIR)
- Low mass/low power for flight
- Mineral characterization and ice/water detection before volatile processing
- Controlled illumination source

Resource Localization –
Neutron Spectrometer (NS)
- Low mass/low power for flight
- Water-equivalent hydrogen ≥ 0.5 wt% down to 1 meter depth at 0.1 m/s roving speed

Volatile Content/Oxygen Extraction –
Oxygen & Volatile Extraction Node (OVEN)
- Temperature range of <100K to 900K
- 50 operations nominal
- Fast operations for short duration missions
- Process 30 to 60 gm of sample per operation (Order of magnitude greater than TEGA & SAM)

Volatile Content Evaluation –
Lunar Advanced Volatile Analysis (LAVA)
- Fast analysis, complete GC-MS analysis in under 2 minutes
- Measure water content of regolith at 0.5% (weight) or greater
- Characterize volatiles of interest below 70 AMU

Operation Control –
Flight Avionics [CSA/NASA]
- Space-rated microprocessor

Surface Mobility/Operation
[CSA mobility platform]
- Low mass/large payload capability
- Driving and situation awareness, stereo-cameras
- Autonomous navigation using stereo-cameras and sensors
- NASA contributions likely for communications and thermal management

RESOLVE Instrument Suite Specifications
- Nom. Mission Life = 10+ Cores, 12+ days
- Mass = 60-70 kg
- Dimensions = w/o rover: 68.5 x 112 x 1200 cm
- Ave. Power: 200 W
RESOLVE 3rd Generation Prototype
Near Flight Mass, Volume and Power

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Planning the Mission: Where should we land?

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

- **Permanent Shadowed Craters?**
 - LRO radar data suggests large, thick deposits of water ice in some of the Permanently Shadowed Craters.
 - However, temperatures are extremely low (<40K), and a mission of any significant duration would probably require a nuclear energy source.
 - Mission would be prohibitively expensive for our current budget environment.
- **Partially sunlit regions?**
 - Lunar Exploration Neutron Detector (LEND) suggests that there are areas of neutron suppression (indicator of hydrogen) outside of the permanently shadowed regions.
 - David Paige and the DIVINER radiometer team published results indicating that there are many areas in the polar regions that have subsurface temperatures (<100K) that would support the existence of water ice.
 - Solar powered missions are more affordable and the operating environment for hardware is much less harsh.
 - Perhaps a location like this would make it easier to set up a future mining operation on the Moon if the resources were plentiful enough.
RESOLVE Mission Options –
Potential South Pole Landing Sites

LEND Results

Site Analysis

<table>
<thead>
<tr>
<th>Site</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow “Frost Line”</td>
<td><0.1 m</td>
<td><0.2 m</td>
<td><0.1 m</td>
</tr>
<tr>
<td>Slopes</td>
<td><10°</td>
<td><15°</td>
<td><10°</td>
</tr>
<tr>
<td>Neutron Depletion</td>
<td>4.5 cps</td>
<td>4.7 cps</td>
<td>4.9 cps</td>
</tr>
<tr>
<td>Temporary Sun*</td>
<td>4 days</td>
<td>2-4 days</td>
<td>5-7 d</td>
</tr>
<tr>
<td>Comm Line of Sight*</td>
<td>8 days</td>
<td>17 days</td>
<td>17 days</td>
</tr>
</tbody>
</table>

* may not coincide

Predicted Volatile Stability

Solar Power Potential

LEND Data (circa Fall 2009)

Depth to where water loss is < 1 kg m² per Gyr

Solar illumination for May 2017
RESOLVE Mission Options – Potential South Pole Landing Sites

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Cabeus Image (Site A)

LCROSS Impact Site

~10 km

LRO LROC WAC mosaic
Sun and Shadow Ops

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

SUN (2.5 days)
- Checkout
 - 6.17 hrs
- 1st Navigation 0.6 km
 - 3.88 hrs, 0.6 km total
- Drill 1st Hole 4.33 hrs
 - Two 0.5m Augers (1-2)
 - One 1.0m Core (1)
- Process Segments (1-8)
 - 8 segments, 26.84 hrs
- 2nd Navigation 0.6 km
 - 3.88 hrs, 1.2 km total
- Drill 2nd Hole 4.33 hours
 - Two 0.5m Augers (3-4)
 - One 1.0m Core (2)
- Process Segments (9-10)
 - 2 segments, 9.59 hrs

SHADOW (2 days)
- Hibernate
 - 48 hrs
- Consider using this "down time" to downlink detailed RESOLVE data (pics, detailed plant data, etc.)

MISSION SUMMARY
- Mission Length 9.5 days
 - 2.5 days Sun
 - 2.0 days Shadow
 - 5.0 days Sun
 - 8.2 days of Scheduled Activities
 - 1.3 days of Reserve Time
- Samples Processed
 - 25 processed at 150 deg C
 - 3 processed at 900 deg C
- Navigation
 - 5 navigation periods
 - Distance traveled is 3.0 km
- Drilling
 - Ten 0.5 m Augers
 - Five 1.0 m Cores

SUN (5 days)
- Battery Recharge
 - 6.8 hrs
- 3rd Navigate 0.6 km
 - 3.88 hrs, 1.8 km total
- Drill 3rd Hole 4.33 hrs
 - Two 0.5m Augers (5-6)
 - One 1.0m Core (3)
- Process Segments (11-15)
 - 5 segments, 19.85 hrs
 - 1st H2 Reduction
- 4th Navigate 0.2 km
 - 2.29 hrs, 2.0 km total
- Drill 4th Hole 4.33 hrs
 - Two 0.5m Augers (7-8)
 - One 1.0m Core (4)
- Process Segments (16-20)
 - 5 segments, 19.85 hrs
 - 2nd H2 Reduction
- 5th Navigate 1.0 km
 - 5.47 hrs, 3.0 km total
- Drill 5th Hole 4.33 hrs
 - Two 0.5m Augers (9-10)
 - One 1.0m Core (5)
- Process Segments (21-25)
 - 5 segments, 18.41 hrs
 - 3rd H2 Reduction
RESOLVE Mission Simulation

- RESOLVE mission has the most challenging surface mobility timeline ever considered.
- To ensure that the mission objectives can be met a mission simulation using the Field Prototype was executed.
- Goal was to test the hardware in a harsh environment, and test our ability to meet mission objectives in a restricted timeline.
- Full Mission Control with Shift Operations planned.
- Test was conducted on the slopes of the volcano Mauna Kea (background image).
 - Some accommodations had to be made due to natural water table, solar power availability, safety, etc.
Test Site on Mauna Kea very similar to the Moon!

Mauna Kea

Apollo 16
On-Site & Remote Operations Centers
5 Centers; 4 different time zones

On-Site Control Center
ExDoc at CSA HQ
Johnson Space Center
Kennedy Space Center
Science Backroom at ARC
Lunar Polar Resource Mission Simulation

‘Flight’ like hardware and operations

Rover Egress from Lander

Rover Searching Exploration Site

Data from Neutron Spectrometer and Rover Navigation displayed on xGDS showing ‘hot spot’ found by RESOLVE

Auger and Examine Cutting Pile for Ice with Near Infrared Spectrometer

Neutron Spectrometer, NIR lamp spot, Auger

Darker cuttings appear at a depth of 15-120 cm

Traverse Path

Hottest Hotspot

Drilling, Sample Collection, Sample Transfer, & Processing to Measure Water and Other Volatiles
CAT 1 Objectives (Mandatory)
- Travel at least 100m on the lunar surface to map the horizontal distribution of volatiles (FD1)

CAT 2 Objectives (Highly Desirable)
- Perform at least 1 coring operation. Process all regolith in the drill stem acquired during the coring operation. (FD2)
- Perform at least 1 water droplet demo during volatile analysis. (FD2)

CAT 3 Objectives (Desirable)
- Map the horizontal distribution of volatiles over a point-to-point distance of 500m (FD4) (lunar objective is 1km.)
- Perform coring operations and process regolith at a minimum of 3 locations (FD4).
- Volatile analysis will be performed on at least 4 segments from each core to achieve a vertical resolution of 25cm or better.
- Perform a minimum of 3 Augering operations (FD4). (Note that the lunar objective is 6)
- Perform at least 2 total water droplet demos. Perform 1 in conjunction with hydrogen reduction and perform 1 during low temperature volatile analysis.

CAT 4 Objectives (Goals)
- Perform 2 coring operations be separated by at least 500 m straight line distance. (FD4) (lunar objective is 1km.)
- Travel 3 km total regardless of direction
- Travel directly to local areas of interest associated with possible retention of hydrogen
- Process regolith from 5 cores
- Perform hardware activities that can be used to further develop lunar exploration technologies
Mission Simulation Conclusions

- As expected, the mission timeline is extremely challenging
- Problems, which are always going to occur, delay ability to achieve objectives
 - Essential to develop contingency plans for as many problems that can be envisioned
 - Lost a lot of time during simulation troubleshooting when we should have just been executing alternate plans
- In spite of the hardware and operational problems experienced we achieved most of the mission objectives
 - Vaporizing, transferring and sampling the water vapor took longer than expected (need to increase transfer tank size)
 - OVEN design may be sensitive to slope rover is on
- Bottom line…. Mission appears to be achievable. Development will continue
Forward Work & Flight

- In FY13 each subsystem will build a prototype that can be tested in a thermal vacuum chamber
 - Risk reduction activity
 - Some integration of subsystems that are tightly coupled is likely to occur (e.g. OVEN and LAVA)
- More detailed assessment of potential landing sites will occur
 - We’d like to find an area of partial sunshine close to an area of permanent shadow
- Critical Trade Studies will be conducted
 - Thermal management, Communications architecture, Power management, etc.
- Development team hopes to receive an Authorization to Proceed (ATP) to flight within the next year.
- If Team receives ATP, the mission would be targeted for the spring of 2017.
Questions?