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A new algorithm is proposed that smoothly integrates non-linear estimation of
the attitude quaternion using Davenport’s q-method and estimation of non-attitude
states through an extended Kalman filter. The new method is compared to a similar
existing algorithm showing its similarities and differences. The validity of the
proposed approach is confirmed through numerical simulations.

INTRODUCTION

The well-known Wahba Problem [1] is a non-linear, weighted least-squares problem that seeks to
obtain the optimal attitude matrix from a set of at least two independent vector measurements. The
most common technique used to solved the Wahba problem is the so-called q-method, developed by
Davenport and documented in [2]. The q-method rearranges the Wahba performance index into a
quadratic performance index of the attitude quaternion, which is constrained to have unit norm. The
extremals of this performance index are the eigenvalues of the Davenport matrix, and the optimal
quaternion is the unit eigenvector corresponding to the largest eigenvalue.

A variety of numerical approaches exist for calculating the maximum eigenvalue and correspond-
ing eigenvector of the Davenport matrix. For example, the QUEST algorithm [3] calculates the
eigenvalue using a Newton-Raphson method and the eigenvector by factoring the quaternion as a
vector of Rodrigues parameters. To avoid the singularity of the Rodrigues parameters the method
of successive rotations is also introduced in [3]. Alternatively, ESOQ [4] avoids the singularity by
computing the quaternion as a vector cross product in four dimensions. In a follow-on algorithm,
ESOQ-2 [5], the Euler axis is computed as the null space of a 3× 3 matrix that is derived from the
Davenport matrix.

QUEST, ESOQ, and ESOQ-2 are numerical implementations of Davenport’s q-method. Other
numerical techniques exist that compute the attitude matrix directly rather than the quaternion. One
such technique from Markley is based on the Singular Value Decomposition (SVD) [6]. Here, it
should be noted that the original Wahba problem objective function is fundamentally just a special
case of the Orthogonal Procrustes Problem, which has received a considerable amount of study
since the 1950s [7].
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One of the reasons that the Wahba problem has received so much attention is that it provides
a globally optimal solution and it does not make any linearization or small angle approximations.
Conversely, the workhorse of aerospace estimation, the extended Kalman filter (EKF) [8] relies on
linearization to obtain an estimate. The solution to the Wahba problem provides single point attitude
estimates and requires all the measurements to be synchronized. The EKF and its attitude-specific
extensions (most notably additive EKF [9] and multiplicative EKF [10]) in contrast are recursive
estimators.

With this in mind, a number of algorithms have been developed to reformulate Davenport’s solu-
tion into a recursive algorithm. Two of the first such methods are Filter QUEST [11] and REQUEST
[12], which are both sub-optimal filters capable of estimating attitude (but not other states, such as
biases). Later, Filter QUEST and REQUEST were shown to be two different formulations of math-
ematically equivalent filters [13]. Subsequently, the Optimal-REQUEST filter [14] addressed the
sub-optimality of these filters, but was still not capable of estimating non-attitude states.

Markley [15] shows how to estimate not only attitude, but also other parameters such sensor
biases from vector observations. Extended-QUEST also estimates attitude and non-attitude states
[16]. This work introduces a novel EKF-based estimation algorithm that integrates the q-method
to process attitude vector measurements. The existing algorithm that most closely resembles the
present work is the Sequential Optimal Attitude Recursion (SOAR) filter by Christian and Lightsey
[17]. The key difference is that SOAR uses the information formulation of the Kalman filter for the
measurement update while the proposed method is a covariance formulation. This difference will
usually require smaller matrix inversions when the size of the state vector is large. Another differ-
ence between the two methods is how the initial condition is introduced into the Wahba problem.
This paper uses quaternion averaging [18], while SOAR uses the information matrix approach by
Shuster [19]. In spite of these differences, the proposed q-method EKF (qEKF) and the SOAR filter
are shown to be equivalent to second-order in the attitude update and first-order in the non-attitude
state update. Hence qEKF and SOAR can be considered the covariance and information approaches
to the solution of the same problem.

The proposed algorithm smoothly integrates the q-method into the EKF framework. Similar to
the SOAR filter and Extended QUEST, the proposed algorithm processes the vector measurements
first and the remaining quantities last. However, unlike Extended QUEST, both the SOAR filter and
qEKF do not necessitate numerical iterations. Shuster [20] suggests that numerical solutions to the
q-method such as QUEST could be used as a pre-processor for the EKF. The proposed algorithm
takes this concept one step further by integrating the q-method into the EKF.

THE WAHBA PROBLEM

Re-written in terms of the inertial-to-body quaternion q̄, the Wahba problem consists of minimiz-
ing the performance index

min
q̄
J
(
ˆ̄q
)

=
1

2

n∑
i=1

ai
∥∥ỹi −T(ˆ̄q)ñi

∥∥2
, (1)

where ỹi are vector observations and ñi are their representation in the reference frame.

In the absence of noise, the perfect measurement is simply given by

yi = T(q̄) ni (2)
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In the presence of uncertainty, this becomes (omitting the dependency on q̄)

ỹi = Tñi + δyi (3a)

ñi = ni + δni (3b)

since ‖ỹi‖ = ‖yi‖ = 1 and ‖ñi‖ = ‖ni‖ = 1, the following is also true to first order

ỹTi δyi ≈ yTi δyi ≈ 0 ñTi δni ≈ nTi δni ≈ 0 (4)

This leads directly to the QUEST measurement model [3] for a unit vector observation,

Rnn = σ2
n

(
I3×3 − nnT

)
(5a)

Ryy = σ2
y

(
I3×3 − yyT

)
(5b)

Substituting this result into Eq. (1) (and assuming that δyi and δni are uncorrelated) shows that for
ˆ̄q to be a maximum likelihood estimate of the attitude (to first order) the weights ai should be the
following

ai ≈ 1/
(
σ2
n + σ2

y

)
(6)

Returning to Eq. (1), the goal is now to reformulate the problem in terms of the attitude quater-
nion. Begin by recalling that the coordinate transformation matrix written as a function of the
quaternion is given by

T = T (q̄) = I3×3 − 2q4 [qv×] + 2 [qv×]2 (7a)

=
(
q2

4 − qT
v qv

)
I3×3 − 2q4 [qv×] + 2qvq

T
v (7b)

The minimization of the Wahba performance index in Eq. (1) is now equivalent to the maximization
of

max
q̄
J ?
(
ˆ̄q
)

= trace
[
T
(
ˆ̄q
)
BT
]

= ˆ̄q
T
Kˆ̄q, (8)

where the 4× 4 Davenport matrix K is obtained as

B =
n∑
i=1

aiỹiñ
T
i z =

n∑
i=1

ai (ỹi × ñi)

S = B + BT σ = trace (B)

K =

[
S− σI3×3 z

zT σ

]
,

the optimal quaternion is the unit eigenvector of K associated with the maximum eigenvalue.

In this work K is slightly modified to perform covariance analysis. The performance index is
equivalently rewritten as

J ?
(
ˆ̄q
)

= σ + ˆ̄q
T
[
M z

zT 0

]
ˆ̄q, (9)
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hence the optimal quaternion is the unit eigenvector of the matrix in Eq. (9) corresponding to its
maximum eigenvalue and

M =
n∑
i=1

ai ([ỹi×] [ñi×] + [ñi×] [ỹi×]) = S− 2σI3×3. (10)

Recall that the perfect measurements yi are defined as yi = Tni where T is the true attitude
matrix and ni are error-free reference vectors. By using yi and ni in place of ỹi and ñi in the q-
method the true quaternion q̄ is obtained. Matrix Btrue is computed with the perfect values yi and
ni. When the vectors yi and T(q̄)ni are used as the inputs in the q-method the identity quaternion
is obtained; with this approach we are estimating the deviation from the true body frame which is
denoted as δq̄∗, the superscript “∗” indicates the quaternion conjugate. Using yi and T(q̄)ni to
calculate matrix B we obtain T (q̄) Btrue, hence the performance index is given by

J ?(δq̄∗) = trace
[
T (δq̄∗) T (q̄) BT

true

]
, (11)

Notice that the combination of having perfect measurements and replacing ni with T(q̄)ni results
in z = 0, which makes the performance index

J ?(δq̄∗) = σ + δq̄∗T
[
Htrue 0

0T 0

]
δq̄∗, (12)

where

Htrue =
n∑
i=1

ai ([yi×] [(Tni)×] + [(Tni)×] [yi×])

= 2
n∑
i=1

ai
(
yiy

T
i − I3×3

)
= 2

n∑
i=1

ai[yi×]2. (13)

Htrue has non-positive eigenvalues, therefore the maximum eigenvalue of the modified Davenport
matrix is zero and the optimal solution is the identity quaternion.

Re-introducing the error in the measurements and using ỹi and T (q̄) ñi in the q-method the
algorithm returns the estimation error since the performance index becomes

J ? (δq̄∗) = trace
[
T (δq̄∗) T(q̄)BT

]
, (14)

or equivalently (making use of the definition of the quaternion conjugate q̄∗ =
[
−qT

v q4

]T)

J ? (δq̄) = σ + δq̄T

[
Hθ δz

δzT 0

]
δq̄, (15)

where

Hθ =

n∑
i=1

ai ([ỹi×] [(Tñi)×] + [(Tñi)×] [ỹi×]) (16)

δz = −
n∑
i=1

ai (ỹi ×Tñi) (17)
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In the absence of noise the optimal eigenvalue is equal to zero. With noise, the optimal eigenvalue
is a small quantity δλ. The eigenvalue problem requires the following equation to be satisfied

Hθ δqv + δq4 δz = δλ δqv.

Making a first-order approximation of the quaternion and neglecting terms of order higher than one
the estimation error is found to be

δqv = −H−1
θ δz.

Therefore the covariance of the estimation error is given by

Pθθ = 4H−1
θ E

{
δzδzT

}
(H−1

θ )T,

which is equivalent to the result by Shuster but derived differently. Clearly since the true attitude is
unknown, Hθ needs to be evaluated at the estimated attitude; the added approximation is a second-
order effect. To first-order we have that

δz = −
n∑
i=1

ai {yi × (Tδni) + δyi × (Tni)} . (18)

therefore assuming each source of error is uncorrelated from the others

E
{
δzδzT

}
=

n∑
i=1

a2
i

{
[yi×] T E

{
δniδn

T
i

}
TT [yi×] T + [(Tni)×] E

{
δyiδy

T
i

}
[(Tni)×]T

}
.

(19)

To calculate E
{
δzδzT

}
the unknown quantities yi, ni, and T need to be replaced with the known

quantities ỹi, ñi, and T̂.

Therefore, for reasons that will become evident in the subsequent section, suppose one defines R
as

R = 4 E
{
δzδzT

}
= 4

n∑
i=1

a2
i

{
[ỹi×] T̂RnnT̂T [ỹi×] T +

[
(T̂ñi)×

]
Ryy

[
(T̂ñi)×

]T
}

(20)

After substituting in Eq. (5b) and Eq. (5a), it follows that to first-order

R = −2Hθ. (21)

This relationship will be critical in showing the equivalence between the qEKF and the SOAR filter.

INITIAL CONDITION

Shuster [19] shows one method to introduce initial conditions and quaternion measurements into
the Wahba problem. Here a different approach is used. This section only treats the inclusion of
the initial condition ˆ̄q0, which is equivalent to having a single quaternion measurement available
on top of the vector measurements. The extension to multiple quaternion measurements is trivial;
quaternion “measurements” are usually obtained from pre-processing vector measurements, in this
work it is preferred to process the vector measurements directly.
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The initial condition ˆ̄q0 is introduced with the quaternion averaging performance index [18]

J (ˆ̄q) = ˆ̄q
T
Ξ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q +
1

2

n∑
i=1

ai
∥∥ỹi −T

(
ˆ̄q
)
ñi
∥∥2 (22)

where

Ξ (q̄) =

[
q4I3×3 + [qv×]

−qT
v

]
.

The initial estimation error is
δq̄0 = q̄⊗ ˆ̄q

∗
0,

where the quaternion product⊗ is defined such that the quaternions are multiplied in the same order
as the attitude matrices.

To perform covariance analysis the same procedure as the previous section is used and instead
of estimating the quaternion q̄, the deviation from it is sought. The performance index for the
equivalent maximization problem then becomes

J ?(δq̄) =δq̄T

[
H0 δz0
δz0

T s0

]
δq̄ + σ + δq̄T

[
Hθ δz

δzT 0

]
δq̄ (23)

H0 = −A0 − [δqv0×] A0 + A0 [δqv0×] + [δqv0×] A0 [δqv0×]
δz0 = A0δqv0 + [δqv0×] A0δqv0

s0 = −δqT
v0A0δqv0

making a first-order approximation and combining the matrices we obtain

J ?(δq̄) = σ + δq̄T

[
−A0 − [δqv0×] A0 + A0 [δqv0×] + Hθ A0δqv0 + δz

δqT
v0A0 + δzT 0

]
δq̄. (24)

hence

δqv = −(−A0 − [δqv0×] A0 + A0 [δqv0×] + Hθ)−1(A0δqv0 + δz) (25a)

' −(−A0 + Hθ)−1(A0δqv0 + δz), (25b)

where the approximation holds to first-order. As was noted in Eq. (20), define

R = 4 E
{
δzδzT

}
(26)

assuming qv0 and δz are uncorrelated

Pθθ = (−A0 + Hθ)−1(A0Pθθ0A0 + R)(−A0 + Hθ)T (27a)

= Kθ (A0Pθθ0A0 + R) KT
θ (27b)

where
Kθ = (−A0 + Hθ)−1 .

This covariance update equation is now rewritten in the familiar Joseph form [21]

(−A0 + Hθ)−1 (−A0) = (−A0 + Hθ)−1 (−A0 + Hθ −Hθ)

= I− (−A0 + Hθ)−1 Hθ

= I−KθHθ
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applying this result into Eq. (25b)

δqv = (I−KθHθ)δqv0 −Kθδz.

it then follows that

Pθθ = (I−KθHθ) Pθθ0 (I−KθHθ)T + KθRKT
θ (28)

which is the Joseph formula. The initial weight is chosen as A0 = 2P−1
θθ0 because the first term of

Eq. (22) does not contain the factor 1/2 and δθ̂ ' 2Ξ
(
ˆ̄q0

)T ˆ̄q.

THE Q-METHOD EXTENDED KALMAN FILTER

Let’s start with linear measurements, the extension to the nonlinear case can be readily obtained
using standard extended Kalman filter techniques. Let y be a set of measurements of a state vector
x corrupted by zero mean noise η with covariance R

y = Hx + η, (29)

where H is the measurement mapping (or sensitivity) matrix. Let x̂− be an unbiased estimate of x
with corresponding estimation error covariance given by P−. The a priori estimation error is given
by

e− = x− x̂−. (30)

The unbiased linear update based upon x̂− and y produces the a posteriori estimate given by

x̂+ = x̂− + K
(
y −Hx̂−

)
= x̂− + Kε, (31)

where ε is called the measurement residual and K is some deterministic matrix of appropriate
dimensions to be determined. The a posteriori estimation error is expressed as

e+ = x− x̂+ = (I−KH)e− −Kη. (32)

Assuming that the measurement error η and the a priori estimation error, e− are uncorrelated and
each are zero mean, we find that the a posteriori estimation error covariance is given by the Joseph
formula [21]

P+ = E
{(

x− x̂+
) (

x− x̂+
)T}

= (I−KH)P−(I−KH)T + KRKT, (33)

where I is the identity matrix of appropriate dimension. Notice that no assumptions have been made
as to the choice of K and the Joseph update equation is valid for all K.

Suppose now that we partition x into 3 attitude states, θ, and n− 3 other states, s as

x =

[
s
θ

]
. (34)

Partitioning the relevant matrices accordingly it is obtained that

P =

[
Pss Psθ

Pθs Pθθ

]
(35a)

H =
[
Hs Hθ

]
(35b)

Kopt =

[
Ks,opt

Kθ,opt

]
=

[
P−ssH

T
s + P−sθHT

θ

P−θsH
T
s + P−θθHT

θ

]
W−1 (35c)
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where W is the residuals covariance matrix

W = HP−HT + R

= HsP
−
ssH

T
s + HsP

−
sθHT

θ + HθP−θsH
T
s + HθP−θθHT

θ + R. (36)

The updated portions of the covariance are

P+
ss = P−ss−KsH

[
P−ss
P−θs

]
−
[
P−ss
P−θs

]T

HTKT
s +KsWKT

s (37a)

P+
sθ = P−sθ−KsH

[
P−sθ
P−θθ

]
−
[
P−ss
P−θs

]T

HTKT
θ +KsWKT

θ (37b)

P+
θs = P−θs−KθH

[
P−ss
P−θs

]
−
[
P−sθ
P−θθ

]T

HKT
s +KθWKT

s (37c)

P+
θθ = P−θθ−KθH

[
P−sθ
P−θθ

]
−
[
P−sθ
P−θθ

]T

HTKT
θ +KθWKT

θ (37d)

These equations are derived from the Joseph formula and are therefore valid for any choice Ks and
Kθ.

We now choose the Ks and Kθ carefully such that the gain for the states is the optimal value
Ks,opt from Eq. (35c) and allowing Kθ to be (as yet) unspecified. Thus, substituting for the value
of Ks,opt for the three components in Eqs. (37a)–(37c), it becomes

P+ =


P−ss −Ks,optWKT

s,opt P−sθ −Ks,optH

[
P−sθ
P−θθ

]
P−θs −

[
P−sθ
P−θθ

]T

HTKT
s,opt P−θθ −KθH

[
P−sθ
P−θθ

]
−
[

P−sθ
P−θθ

]T

HTKT
θ + KθWKT

θ


(38)

This equation is valid for any value of Kθ. Notice that there is no Kθ in the cross-covariance
between s and θ. Therefore, what is remarkable about this equation is that once the optimal Ks,opt

is chosen, the cross-covariance between s and θ is independent of the choice of Kθ. This property is
fundamental to the development of the q-method EKF because it allows us to choose Kθ as defined
in the previous section

Kθ = (−A0 + Hθ)−1.

The measurement residual is obtained as

ε = 2K−1
θ vec

(
ˆ̄q+ ⊗ (ˆ̄q−)∗

)
where vec(q̄) is the function that returns the vector part of the quaternion.

It is assumed that the vector measurements are only functions of the vehicle attitude and do not
depend on any other states, i.e. Hs = 0. In summary the proposed algorithm has a propagation
phase identical to that of the multiplicative EKF and an update phase as follows

1. Calculate the Davenport matrix K associated with all attitude vector measurements
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2. Calculate A0 = 2(P−θθ)−1

3. Calculate the updated attitude quaternion as the unit eigenvector associated with the maxi-
mum eigenvalue of

Kaug = −Ξ
(
ˆ̄q
−
)

A0 Ξ
(
ˆ̄q
−
)T

+ K

4. Calculate Hθ, R, Kθ using Eqs. (16), (26), (19), and (28)

5. Update the non attitude states as

s+ = s− + Ks,opt ε

Ks,opt = P−sθHT
θ (HθP−θθHT

θ + R)−1

ε = 2K−1
θ vec

(
ˆ̄q+ ⊗ (ˆ̄q−)∗

)
6. Update the total covariance using Eq. (38) and H =

[
O Hθ

]
.

7. Process any remaining measurements using the standard MEKF algorithm

COMPARISON WITH THE SOAR FILTER

This section demonstrates the equivalence of the qEKF and the SOAR filter. It begins by making
a key observation about the attitude profile matrix, and then proceeds to compare the attitude update
and the non-attitude update.

Observations on Computation of the Attitude Profile Matrix

Begin by recalling that the Wahba Problem objective function given in Eq. (8) is the negative log-
likelihood function when ai are chosen as shown in Eq. (6). The attitude may be expanded about
the estimate using a Taylor Series expansion truncated to second-order

J (δθ) = −trace
[(

I3×3 + [−δθ×] +
1

2
[−δθ×]2

)
TBT

]
(39)

Under mild conditions, the Fisher information matrix, Fθθ is the expected value of the second-
order derivative of the negative log-likelihood function. Recall from the Cramèr-Rao inequality that
the attitude covariance, Pθθ, is related to the Fisher information matrix by [22]

P−1
θθ ≤ Fθθ = E

[
∂2J(δθ)

∂δθ ∂δθ

]
(40)

and that Fθθ approaches P−1
θθ as the number of measurements become large.

Because Eq. (40) requires the second derivative of J (δθ) with respect to δθ, terms in J (δθ) that
are independent of δθ or linear in δθ are unimportant in the computation of Fθθ. Therefore,

Fθθ = E

[
∂2J(δθ)

∂δθ ∂δθ

]
= E

[
∂2

∂δθ ∂δθ

(
−trace

[
1

2
[−δθ×]2 TBT

])]
(41)
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To compact notation, define the matrix V = TBT,

Fθθ =
1

2
E

[
∂2

∂δθ ∂δθ

(
−trace

[
[−δθ×]2 V

])]
(42)

Now, making the observation that,

[−δθ×]2 = δθ δθT − δθTδθI3×3 (43)

one may directly rewrite Eq. (42) as

Fθθ = −1

2
E

[
∂2

∂δθ∂δθ

(
trace

[
δθ δθTV

]
− δθTδθ trace [V]

)]
(44)

Taking advantage of the cyclic properties of the trace operator,

Fθθ = −1

2
E

[
∂2

∂δθ∂δθ

(
δθTVδθ − trace [V] δθTδθ

)]
(45)

Straightforward differentiation will yield,

Fθθ = trace [V] I3×3 −
1

2

(
V + VT

)
(46)

In the presence of perfect measurements one may note that V = VT, and it is under these conditions
that one arrives at the result presented by Shuster in [19]. In general, however, this is not the case
and using Shuster’s formulation will result in nonsymmetric information and covariance matrices
(clearly not correct!). Fortunately, this assumption is not necessary and one may correctly compute
the Fisher information matrix in the presence of noise as,

P−1
θθ ≈ Fθθ = trace

[
TBT

]
I3×3 −

1

2

(
TBT + BTT

)
(47)

The solution provided by Shuster in Ref. [19] to compute B from Fθθ and T is still valid. By
taking the trace of Eq. (47), note that

trace [Fθθ] = 3trace
[
TBT

]
− trace

[
TBT

]
= 2trace

[
TBT

]
(48)

Substituting this back into Eq. (47),

TBT + BTT = trace [Fθθ] I3×3 − 2Fθθ (49)

Now, it is straightforward to verify that the following solution originally given by Shuster in [19] is
also a solution to this equation,

B =

[
1

2
trace [Fθθ] I3×3 −Fθθ

]
T (50)
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Equivalence of the Attitude Update

Recall from [17] that the SOAR filter includes the a-priori attitude information through the fol-
lowing term in the objective function

−ˆ̄qTK− ˆ̄q = −trace
[
T
(
B−
)T] (51)

In [17] it is also shown that, after a second-order expansion of the matrix exponential of [−δθ×]
about the a priori attitude, this objective function may be rewritten as

−ˆ̄qTK− ˆ̄q = −
(
ˆ̄q−
)T K− ˆ̄q− +

1

2
δθTFθθδθ (52)

The first term is a constant (not dependent on the a posteriori attitude) and disappears when the first
differentials are taken to compute the optimal attitude.

It is now straightforward to show that the a priori attitude term introduced in Eq. (22) is equivalent
to 1/2δθTFθθδθ to second-order. Thus, both the qEKF and the SOAR filters can be shown to
include the a priori attitude information in an equivalent manner to second-order.

To show this, begin by noting that

δqv = Ξ
(
ˆ̄q
−
)T

ˆ̄q = sin

(
δθ

2

)
(53)

Taking the Taylor Series expansion of sin (δθ/2), one may show that to second-order

δqv = sin

(
δθ

2

)
=
δθ

2
− 1

3

(
δθ

2

)3

+
1

5

(
δθ

2

)5

. . . ≈ δθ
2

(54)

Therefore, the first term in Eq. (22) may be rewritten as,

ˆ̄q
T
Ξ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

4
δθTA0δθ (55)

Noting from before that A0 was chosen as A0 = 2
(
P−θθ
)−1 ≈ 2Fθθ, this directly yields

ˆ̄q
T
Ξ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

2
δθTFθθδθ (56)

Therefore, the a priori attitude additions to the objective function for both SOAR and the qEKF are
equivalent to second-order.

Equivalence of the Non-Attitude Update

Partition the Fisher information matrix of the full covariance as

P−1 =

[
Pss Psθ

Pθs Pθθ

]−1

= Fxx =

[
Fss Fsθ

Fθs Fθθ

]
(57)

The relation between Fθθ and Fθθ stems from the inversion of a partitioned matrix,

Fθθ = P−1
θθ + FθsF

−1
ss Fsθ = Fθθ + FθsF

−1
ss Fsθ (58)
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Given this definition, recall from Ref. [17] that the optimal update of the non-attitude states in
the SOAR filter is given by

s+ = s− − 2
(
F−ss
)−1 F−sθ Ξ

(
ˆ̄q
−
)T

ˆ̄q+ (59a)

s+ ≈ s− −
(
F−ss
)−1 F−sθ δθ (59b)

The objective is now to show that this is equivalent to the qEFK non-attitude update. Begin by
recalling that

s+ = s− + Ks,opt ε

Ks,opt = P−sθHT
θ (HθP−θθHT

θ + R)−1

Kθ =
(
−2
(
P−θθ

)−1
+ Hθ

)−1

ε = 2K−1
θ vec

(
ˆ̄q+ ⊗ (ˆ̄q−)∗

)
and, therefore,

s+ = s− + 2Ks,optK−1
θ Ξ

(
ˆ̄q
−
)T

ˆ̄q+ (60)

Looking first at the Ks,opt and recalling the Woodbury identity,

Ks,opt = P−sθHθ

[
R−1 −R−1Hθ

((
P−θθ

)−1
+ HT

θ R−1Hθ

)−1
HT

θ R−1

]
(61)

Further recognizing from Eq. (21) that R = −2Hθ and that Hθ is symmetric,

Ks,opt = P−sθHθ

[
−1

2
H−1

θ +
1

4

((
P−θθ

)−1 − 1

2
Hθ

)−1
]

(62)

And with a bit more simplification,

Ks,opt = −1

2
P−sθ

[
I3×3 −Hθ

(
−2
(
P−θθ

)−1
+ Hθ

)−1
]

= −1

2
P−sθ [I3×3 −HθKθ] (63)

Substituting into Eq. (60) for Ks,opt,

s+ = s− −P−sθ [I3×3 −HθKθ] K−1
θ Ξ

(
ˆ̄q
−
)T

ˆ̄q+ (64)

Expanding terms,

s+ = s− −P−sθ
[
K−1

θ −Hθ

]
Ξ
(
ˆ̄q
−
)T

ˆ̄q+ (65a)

= s− + 2P−sθ
(
P−θθ

)−1
Ξ
(
ˆ̄q
−
)T

ˆ̄q+ (65b)

Now, recall from the definition of the partitioned matrix inverse that

F−sθ = −F−ssP
−
sθ

(
P−θθ

)−1 (66a)(
F−ss
)−1

F−sθ = −P−sθ
(
P−θθ

)−1 (66b)
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And, substituting this into Eq. (65b),

s+ = s− − 2
(
F−ss
)−1

F−sθ Ξ
(
ˆ̄q
−
)T

ˆ̄q+ (67a)

s+ ≈ s− −
(
F−ss
)−1 F−sθ δθ (67b)

which are equivalent to the SOAR Filter updates from Eq. (59).

NUMERICAL EXAMPLE

For this numerical example the spacecraft is placed in a circular orbit with an altitude of 622 km
and an inclination of 45 degrees. At the beginning of the simulation the Earth is at vernal equinox
20 March 2012 and the spacecraft is at the ascending node. Throughout its orbit the spacecraft is
oriented such that the body-fixed X axis is directed in track and the Z axis is Earth-pointing with the
Y axis following a right handed coordinate system. As a result the spacecraft has a constant angular
velocity equal in magnitude to the orbital mean motion. The sun vector is assumed constant for the
duration of the simulation. The magnetic field vector is obtained from the World Magnetic Model
in the MATLAB Aerospace toolbox.

A gyro is used to measure the angular velocity of the spacecraft and is defined by the following
sensor model [23]

ω̃ = ω + β + ηv

β̇ = ηu

where ω is the true angular velocity, ω̃ is the measured angular velocity, β is the gyro bias vector,
and ηv and ηu are zero-mean Gaussian white-noise processes. Simulated vectors measurements are
created by adding noise to the true direction in the spacecraft body frame. The reference vectors
remain noise free as the model is assumed perfect for this test case. The scalar weights ai of the
Wahba problem follow the QUEST measurement model and are given by 1/σ2

sun and 1/σ2
mag for

the sun sensor and magnetometer measurements respectively.

Error Source Symbol Value

Sun-sensor noise (ηsun) σsun 0.1 deg
Magnetometer noise (ηmag) σmag 0.5 deg
Angular Random Walk (ηv) σv

√
10× 10−7 rad/sec1/2

Gyro Bias Random Walk (ηu) σu
√

10× 10−10 rad/sec3/2

Table 1. Sensors Errors

The state vector consists of the three component gyro bias vector and the three component attitude
angle representation xT =

[
βT θT

]
. The initial gyro bias covariance is 0.22 (deg/hr)2 in each

axis and the initial attitude covariance is 0.12 deg2 in each axis. The initial estimated quaternion is
obtained from perturbing the true quaternion according to the initial attitude covariance while the
initial estimated gyro bias is always zero. The simulation spans 6000 seconds which is slightly more
than one full orbit and uses a step size between observations of 1 second.

Figs. 1 and 2 show the performance of 100 Monte Carlo runs. The red lines are the 100 instances
of the estimation error, the black line is the 3-sigma value of the sample standard deviation. Under-
neath the black lines there are 100 blue lines, which are the 3-sigma filter’s prediction of its own
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uncertainty. Since the predicted uncertainty matches the actual uncertainty we conclude that the
filter is consistent. Fig. 3 shows the performance of SOAR under the same circumstances. It can be
seen that there is no visible difference between the two algorithms.

Figure 1. Attitude estimation error of qEKF expressed in body frame

CONCLUSIONS

The q-method was integrated into an EKF-based filter to produce the novel qEKF filter for attitude
estimation capable of estimating both attitude and non-attitude states without additional numerical
iteration. Within the filter attitude vector measurements are first processed using the q-method which
solves the non-linear Wahba problem directly without any linearizing assumptions. Remaining
measurements are processed to update the non-attitude states using the standard MEKF algorithm.
qEKF was shown to be equivalent to the Sequential Optimal Attitude Recursion (SOAR) filter to
second-order in the attitude update and to first-order in the non-attitude state update where each
method represents the covariance and information matrix formulation respectively. In qEKF the
initial condition is introduced into the Wahba problem through quaternion averaging where the
SOAR filter relies on the information matrix approach. The equivalence of qEKF and SOAR was
also validated by simulation results in which the filter estimated the attitude and gyro bias.

For this work it was assumed that vector measurements are only functions of the vehicle attitude
and not dependent on any other states. A follow-on paper will expand upon this work to extend
qEKF to eliminate this assumption and accommodate the inclusion of such states as sensor biases
and satellite position. As a result, qEKF will be capable of processing a full range of measurements
to estimate both attitude and non-attitude states within a single filter.
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Figure 2. Gyro bias estimation error of qEKF

Figure 3. Attitude estimation error of SOAR expressed in body frame
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