Large Scale Flutter Data for Design of Rotating Blades using Navier-Stokes Equations

Guru P. Guruswamy
Applied Modeling and Simulation Branch
NASA Advanced Supercomputing (NAS) Division
Ames Research Center

AIAA Multidisciplinary Analysis and Optimization Conference
Indianapolis, IN
September 18th, 2012

http://www.nas.nasa.gov/~guru
Acknowledgements

Pieter Buning (LaRc) : Overset grid methods
Doug Boyd (LaRc) : Deforming grid in overset grid topology
Dennis Jespersen (ARC) : MPI for flow solver

Johnny Chang (ARC) : MPIexec based PBS script
David Barker (ARC) : MPIexec/MPI based PBS script

Project Support: Subsonic Rotary Wing (SRW)
High End Computing (HEC)
Objective

- Demonstrate a procedure to compute flutter data for rotating blades
 - Frequency domain approach
 - Large scale computations
 - Focusing on bending-torsion flutter
 - Navier-Stokes (NS) equations based Computational Fluids Dynamics (CFD) as a tool
Background

- Bending-torsion flutter for rotating blade can occur
 - while retreating (center of pressure moves back)
 - when flow is transonic (center of pressure moves back)
 - for high advance ratios
 - during stall

- Large number of cases are needed for design

- Current fast procedures for solving flows use linear theory (LT)

- Higher fidelity equations are needed for accuracy

- Efficient use of supercluster is needed for large scale NS based computations
Background (continued)
Bending-Torsion Flutter in Flight

Camera following the blade
Background (continued)
High Advance Ratio ($\mu \sim 1$) Configuration
(Courtesy of Carter Aviation Technologies)

Bending-torsion flutter is an issue during design
Approach

- Flow equations are solved using the OVERFLOW (2.1c & 2.2c) code
 - Reynolds averaged Navier-Stokes (RANS) equations
 - Pulliam-Chausse diagonal form of central difference solver
 - Spalart-Allmaras turbulence model
 - Structured overset grids with 2nd order spatial/temporal accuracy
 - Well validated for unsteady flow calculations
 - 1-D prescribed modal motion interface (AIAA 2012-4789)

- Lagrange’s structural equations of motion solved using FLUMOD
 - Modal form
 - Frequency domain

- Initial validation using
 - Kernel Function and Doublet-Lattice based linear aero methods
 - Experiments for fixed blades
 - Comparison with fixed blade flutter

- Use CFD grids previously validated for steady flows
 (Doug Boyd, AHS 56 May 2009, Guruswamy J of Aircraft, May 2010)
U-g method (Velocity-damping)

- Assumes linear-superposition of modes similar to that in reduced-order modeling (ROM) methods
- Predicts on-set of flutter
- Built-in procedure in NASTRAN using doublet-lattice and Mach box linear aerodynamic theories
 - Routinely used by aerospace industry
- Extensively applied for fixed wings using NS equations
Frequency Domain Formulation

- With $[\Phi]$ as modal matrix, displacements are expressed as

$$\{d\} = [\Phi] \{h\}$$

- Generalized displacements at flutter are

$$\{h\} = \{\bar{h}\} e^{\omega(1+ig)t}$$

$\omega = \text{circular frequency, } g = \text{structural damping; } t = \text{time}$

- Complex Eigenvalue Eqn for bending \bar{h}_1 and torsion \bar{h}_2

$$\eta k_r^2 \left([M] - [A]\right) \{\bar{h}\} = \lambda [K] \{\bar{h}\}$$

Air-Mass Ratio $\eta = M_{11}/(\pi \rho R c^2)$
Reduced Freq $k_r = 4\omega c / 3 \Omega R$

Eigen-Value $\lambda = \eta(1+ig)\omega_f^2 c^2 / 4 S^2$
Flutter Speed $S = 2U/c \omega_2$

$\Omega = \text{rotation speed}; \omega_1, \omega_2, \omega_f = \text{bending, torsion, flutter freq}$

$[M] = \text{mass}; [K] = \text{stiffness.}; c = \text{chord}; U = \text{velocity}; R = \text{radius}$

- $[A] = \text{aerodynamic matrix computed using RANS solver}$
Aerodynamic Coefficients from RANS Solver

\[A_{11} = \int_{0}^{R} C_{l\delta} \Phi_1^2 \delta r \]
\[A_{12} = \int_{0}^{R} C_{l\alpha} \Phi_1 \Phi_2 \delta r \]
\[A_{21} = \int_{0}^{R} C_{m\delta} \Phi_2 \Phi_1 \delta r \]
\[A_{22} = \int_{0}^{R} C_{m\alpha} \Phi_2^2 \delta r \]

\(\Phi_1 \) and \(\Phi_2 \) are bending and torsion modes, respectively

\[C_{l\delta}(r) = \text{Lift due to bending mode} \]
\[C_{l\alpha}(r) = \text{Lift due to torsion mode} \]
\[C_{m\delta}(r) = \text{Moment due to bending mode} \]
\[C_{m\alpha}(r) = \text{Moment due to torsion mode} \]
Flutter Solution Procedure

- Compute force responses for 2 modes and various frequencies at a given rotating speed (Ω)
- Compute real/imaginary values of forces from Fourier analysis
- Solve Eigen-Value equation by varying the frequency and tracking g
- Extract flutter point when g changes sign

![Typical U-g plot](image)
Parallel Computational Procedure

- Massively parallel computations
- Single job submission script to run all cases at same time using portable batch system (PBS)

GENMOD

- CFD Base Grid
- Generate Input Data (Ω, k, Φ)
- Spawn Jobs to Nodes Using PBS
- Assemble AIC Matrix
- Input to FLUMOD

Typical Timings

- 25 wall-clock hrs to run up to 1000 responses for flexible wing
VALIDATION AND DEMONSTRATIONS
Validation of Unsteady Pressures
Non-Rotating blade, $M_{\infty} = 0.90$, Reduced Freq. = 0.26, Re = 2.1×10^6

Computations
- C-H grid, 253K (151x35x48)
- 2400 time steps per cycle
- results at 4th cycle
- data taken at 50% with no wall viscous effects

Unsteady Cp at 50% Semispan

NASA TND-344 (1960,ARC)
6% thick parabolic arc, Aspect Ratio = 5
Blade oscillating in first flapping mode

NASA TND-344 (1960,ARC)
Validation of Flutter Boundary
Non-rotating aeroelastic rectangular wing, $Re = 4.5 \times 10^6$
NASA TMX -79 (1959, LaRc), 6% Parabolic Arc, Aspect Ratio = 5

Computations
- C-H grid, 253K points (151x35x48)
- 2400 steps per cycle
- 4 oscillations
- 2 modes, 5 frequencies,
 10 Mach numbers

Kernel Function
Demonstration for Single Rotating Blade

Hover, $\theta_c = 10$ deg, Aspect ratio =16, NACA23012, $Re = 15 \times 10^6$

Grid
- Doug Boyd, 56th AHS, 2009
- 1.8×10^6, 3 near body blocks
- outer boundaries ~10 chords

Structural Properties
$\omega_1 / \omega_2 = 0.30$
mass center = 45% chord
elastic axis = 25% chord

Cases - 100
- 10 rotating speeds
- 2 modes
- 5 frequencies
Twist Modes

ω₂/Ω

Tip Twist in Degrees

Azimuth
Time Step Convergence of Sectional Lift
\(\omega_2/\Omega = 2.0, 4^{th} \) Revolution, 85\% radial station

Number of Steps per Revolution (NSPR)

<table>
<thead>
<tr>
<th>NSPR</th>
<th>Number of Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>720</td>
<td></td>
</tr>
<tr>
<td>1440</td>
<td></td>
</tr>
<tr>
<td>2160</td>
<td></td>
</tr>
<tr>
<td>2880</td>
<td></td>
</tr>
<tr>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>4320</td>
<td></td>
</tr>
</tbody>
</table>
Time Step Convergence of Pitching Moment

ω₂/Ω = 2.0, 4ᵗʰ Revolution, 85% radial station
Flutter Boundary for a Rotating Blade

- 100 responses with 4 revolutions using NSPR = 3600
 - Each case is assigned to one core, 24 hr wall clock time

Graphs:
- Scaled Flutter Speed vs. Rotating Speed in rad/sec (Ω)
- Flutter Frequency vs. Rotating Speed in rad/sec (Ω)
Summary

• A procedure to compute flutter boundaries of rotating blades is presented
 - Navier-Stokes equations
 - Frequency domain method compatible with industry practice

• Procedure is intially validated
 - Unsteady loads with flapping wing experiment
 - Flutter boundary with fixed wing experiment

• Large scale flutter computation is demonstrated for rotating blade
 - Single job submission script
 - Flutter boundary in 24 hour wall clock time with 100 cores
 - Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries.

• Further wall-clock speed-up is possible by performing parallel computations within each case
 -- work in progress