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NASA’s Evolutionary Xenon Thruster 

(NEXT) Long-Duration Test as of 736 kg of 

Propellant Throughput 

Abstract: The NASA’s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion 

propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology 

Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission 

capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to 

qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest 

operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the 

NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated 

greater than 28.1 MN∙s total impulse.  

Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several 

lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically 

improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion 

mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used 

in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming 

full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the 

accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. 

Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration.  
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Outline 
• Purpose of the Work 

 

• NEXT LDT Status and Throttling Plan 

 

• Performance Data 

 

• Erosion Images and Data 

 

• Summary and Questions 

Photograph of NEXT EM3 thruster operating at full-power 
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NASA’s Evolutionary Xenon Thruster (NEXT) 

NEXT is ready for first flight 

mission opportunities 

Prototype-Model NEXT thruster during 

thermal vacuum testing at JPL 

• The NEXT project is advancing the capability of ion propulsion 
offering mission enhancement with broad mission applicability 

 

• NEXT is a significant enhancement beyond state-of-the-art (NSTAR) 

– Higher-power, higher-thrust, higher-specific-impulse 

– Wider throttling range, higher thruster service life capability 
 

• Evolutionary design allows us to take advantage of 58,000 hours of 
NSTAR operating time and lessons learned 

– Address NSTAR issues and failure modes 

• Key ion propulsion system hardware has 
advanced to a high state of maturity 
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Purpose of the NEXT Long-Duration Test (LDT) 

• Initiated as part of a comprehensive thruster service life 
assessment utilizing testing and modeling analyses 

– NEXT 2,000 h EM thruster wear test 

– NEXT thruster service life model development 

– NEXT PM1R thruster and propellant management system wear test 

– NEXT Long-Duration Test (LDT) 
 
 

• LDT goals: 

√ Qualify the NEXT thruster propellant throughput capability to an initial 
value of 450 kg 

√ Validate thruster service life models 

√ Characterize thruster performance over test duration 

√ Measure critical thruster component erosion rates 

√ Identify unknown life-limiting mechanisms 
 
 

• LDT objective to demonstrate 450 kg was redefined after 
completion in December 2009 to test-to-failure of the thruster 
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LDT Operating Conditions 

Beam Voltage 

B
e
a
m

 C
u
rre

n
t 

1800 1567 1396 1179 1021 936 850 679 650 400 300 275 

3.52 1 1 2 2 

3.10 1 1 2 2 

2.70 1 2 2 

2.35 1 1 2 2 2 

2.00 3 3 3 

1.60 3 3 3 4 3 

1.20 5 3 3 3 3 3 3 3 4 

1.00 4 

Table illustrating the NEXT throttle table consisting of 40 operating conditions. 

• The 5 extended operating time conditions are numbered below in 
order based upon NEXT LDT throttling profile 

• Thruster performance periodically assessed for 11 operating 
conditions covering the entire NEXT throttle table (shown in red) 

– There are a total of 40 discrete operating conditions in the NEXT 
technology development throttle table 
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NEXT LDT Throttling Profile 

• Throttle the engine in a mission-like profile 

– Throttle down in power consistent with outbound mission profile 

– Thruster has been throttled back to full-power after profile completed 
consistent with inner solar system flyby or sample return trajectory profiles 

• Extended operations at throttle table extremes 

• Characterize critical component erosion for model validation at worst-case 
operating conditions 

• Since completion, thruster has been operated at full-power (TL40) 

Throttle 

Level 

Input 

Power, kW 

Operating 

Condition 

Duration, 

kh 

Segment 

Throughput, kg 

Segment Total 

Impulse, N∙sec 

Segment 

End Date 

TL40 6.9 3.52A, 1800V 13.0 264.7 1.09x107 11/17/2007 

TL37 4.7 3.52A, 1179V 6.5 132.6 4.45x106 12/23/2008 

TL05 1.1 1.20A, 679V 3.4 26.7 6.30x105 6/24/2009 

TL01 0.5 1.00A, 275V 3.2 23.4 3.39x105 12/15/2009 

TL12 2.4 1.20A, 1800V 3.1 24.5 9.11x105 5/5/2010 

  Totals 29.2 471.9 1.73x107   
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NEXT LDT Status 

• Test article is a flight-like engineering-model thruster 

– Prototype Model (PM) ion optics and graphite discharge cathode keeper 
 

• As of 7/20/2012 

– 42,100 hrs of high-voltage operation : Record electric propulsion thruster 

– 736 kg of xenon processed: Record electric propulsion thruster 

– 28.1 MN-sec demonstrated: Record electric propulsion thruster 

• Thruster operating at full power until test completion 
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LDT Propellant Throughput 

• NEXT LDT Demo’d (Current):  736 kg 
 

• Ceres Sample Return:  503 kg 

• NEXT LDT Qualified (Current):  491 kg 

• NEXT Qual. Requirement (Original): 450 kg 

• Exoplanet Finder:   450 kg 

• Mercury Orbiter:   418 kg 

• Comet Sample Return:  405 kg 

• NEARER Mission:   360 kg 

• Vesta-Ceres  Rendezvous:  338 kg 

• Comet Sample Return (Original): 301 kg 

• NSTAR ELT:   235 kg 

• Neptune DSDRM:   197 kg 

• NSTAR DS-1:     73 kg 
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Thruster Performance Parameters 

• Minimal increase in 

input power and 

discharge losses after 

736 kg Xe processed 

– Maximum 30 W 

increase in input power 

(at high power) 

compared to BOL 

– NEXT discharge loss 

increase a maximum 10 

W/A  compared to 22 

W/A for NSTAR 

 

• Constant thrust, Isp, 

and thrust efficiency 

– Minor variations 

resulting from 

neutralizer flow rate 

changes 

10 
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Ion Optics’ Performance Parameters 

• Slight electron 

backstreaming margin 

increase during full-power 

run segments 

– Speculated due to back-

sputtered carbon deposits 

within accelerator apertures 

– Supported by negligible 

change in accelerator 

aperture cusp erosion and 

minor downstream chamfer 

erosion 

– NSTAR first failure mode 

was electron 

backstreaming margin 

decrease to zero 

 

• No change in perveance 

margin 

– Slight changes due to 

accelerator aperture 

chamfering 
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Neutralizer Performance 

• Loss of neutralizer flow margin (IEPC-2009-154) addressed via: 

– NEXT PM neutralizer design change to increase BOL flow margin at 
low emission currents 

– Modified NEXT technology development throttle table to ensure 
adequate margin with thruster operating time 

• Neutralizer flow set points increase as a function of propellant throughput 

• Maintain minimum 0.4 sccm neutralizer flow margin 
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In-Situ Erosion Diagnostics 

13 

• Neutralizer cathode assembly 

– Concern of orifice erosion or clogging and 

keeper erosion due to ion impingement  

 
 

• Cold ion optics’ grid-gap at center 

– Concern of changing grid-gap contributing to 

electron backstreaming  

 

• Accelerator grid center radius aperture 

cusp and downstream chamfer diameters 

– Concern of aperture enlargement due to 

charge-exchange ion impingement 
 

• Accelerator grid outer radii apertures cusp 

and downstream chamfer diameters 

– Concern of aperture enlargement due to 

charge-exchange ion erosion and direct 

impingement due to beamlet over-focusing 

• Discharge cathode assembly 

– Concern of orifice erosion and keeper 

erosion due to discharge plasma 
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NSTAR 

NEXT 

0 kg 150 kg 235 kg 736 kg 

NEXT EM3 beginning-of-life discharge cathode 

assembly with graphite keeper electrode 

In-Situ Erosion Diagnostic - Discharge Cathode 
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In-Situ Erosion Diagnostic – Neutralizer Cathode 

0 h 

• No cathode orifice minimum 

increase/decrease 

– Clogging observed during 

NSTAR ELT at low current 

– Orifice channel erosion 

predicted and modeled 

– AIAA-2009-5196 

• No keeper orifice erosion 

• No keeper outer diameter 

erosion due to ion beam 

impingement 

42,071 h 0 h 42,071 h 

Keeper Inner/Outer Diameters Cathode Orifice Diameter 
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End of 6.9kW 

13042h 11-19-07 

End of 4.7kW 

19520h 7-28-09 BOL Image 

16 

GG060105 

In-Situ Erosion Diagnostic – Cold Grid Gap 

13,042 h 0 h 19,520 h 30,204 h 

• No observed change in cold grid 

gap for NEXT PM optics 
 

• NSTAR wear test data indicated 

increase in grid gap 

– Thermally induced stresses in 

mounting scheme 

– Contributed to NSTAR first failure 

Centerline Accelerator Grid Aperture (at 45°) 

–  Upstream Edge 

–  Cusp 

–  Downstream Edge 

Screen Grid Downstream Edge 
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In-Situ Erosion Diagnostic – Accel. Center Aperture 

• Pit and groove formation 

• Buildup of back-sputtered material 
between pit-groove hexagonal 
pattern and aperture 

• Negligible cusp erosion 

– Improved NEXT beam 

flatness vs. NSTAR 

• Approximate 15% increase in 

down-stream orifice diameter 

0 h 41,195 h 
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In-Situ Erosion Diagnostic – Groove Depth 

• Model predicted groove depth data for full-power operation (6.9 kW) 

segment #1 give minimum thruster service life (exclusively at TL40) 
– Groove wear through after 36 kh (≥750 kg xenon throughput) 

 

• Validated groove erosion modeling 
– All other operating conditions have predicted lifetimes in excess of full-power 

 

• Model predicts groove penetration for LDT assuming continued full-

power operation (TL40) after 45 kh (≥800 kg xenon throughput) 
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Groove Depth Measurement Status 

• The pit and groove measurement is no longer possible due to lack of 
illumination of the bottom of the deep grooves 

– Last measurement was obtained at 35,618 hours 

• Attempts to illuminate the grooves externally have been unsuccessful 
– Only 4 facility view ports are available for external lighting 

• The 2 at the end of the tank are blocked by the cameras and mounting mast 

• One side port is obstructed by the camera mounting mast during imaging 

• The other side port illuminated from a near glancing angle to the accelerator grid 
resulting in lack of illumination inside the pits and grooves (see right image above) 

19 

Pit & Groove Depth Image – 30,204 h  Pit & Groove Depth – 36,434 h: image (left) and with external lighting (right)  
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NEXT LDT Thruster – Performance Summary 

• NEXT LDT setting records for an electric propulsion thruster demo 
– Most accumulated hours of operation 

– Highest total impulse 

– Highest total propellant throughput 

• NEXT LDT surpassed the qualification throughput (450 kg) in CY09 
– One of the main objectives of the LDT accomplished 

– Objective redefined to test to failure (estimated ≥800 kg throughput) 

• Negligible change in thruster performance parameters 
– Thrust, specific impulse, and thrust efficiency constant 

– Increase in discharge losses (10W/A at full-power) consistent with prediction 

– Slight increase in thruster input power (30 W maximum) 

• Ion optics behavior unchanged – NSTAR first failure mode mitigated 
– Negligible change in electron backstreaming and perveance margins 

• Loss of neutralizer flow margin has been addressed 
– NEXT PM thruster neutralizer design change to increase margin at low Jb 

– NEXT throttle table updated to ensure adequate margin over thruster lifetime 
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NEXT LDT Thruster – Erosion Summary 

• Discharge keeper erosion alleviated by graphite keeper 

• NSTAR First-Failure mode (electron backstreaming) mitigated by NEXT 
– Improved beam flatness and constant cold grid-gap 

• NEXT First-Failure mode progressing at model-predicted rates 
– NEXT predicted first failure mode is accelerator grid structural failure 

following groove penetration resulting from charge-exchange ion 

impingement 

– Service life assessment groove progression model validated 

– Indicates NEXT minimum thruster service life >750 kg throughput 
• Full-power has highest groove wear rate with time 

• Consistent with pretest service life assessment, i.e. 700 - 800 kg 

• Plan to continue full-power operation until end of test 
– Predict groove penetration after 45 kh (≥800 kg) 

• Given testing duty cycle, groove penetration predicted in January 2013 
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Thruster Failure Update 

• Erosion through of both the pits and grooves will result in structural 

failure of the accelerator grid 

• Predict groove penetration for LDT profile after 45 kh (≥800 kg) 
– If pits are same depth as groove, structural failure after ≥800 kg 

– If pit depth is 85% of the groove depth then the grid might not structurally fail 

until after 52 kh (≥940 kg) 
 

• NEXT LDT test article failure prediction: 48.5 ± 3.5 kh of operation 

(870 ± 70 kg of xenon propellant throughput) 

 

• Uncertainty in determining the depth of 

pits by direct measurement 

− Images appear to show centerline grooves 

have nearly constant depth along length 

so the pits are at least as deep as the 

grooves 

− When last measurements attempted, pit 

depths were ~85% of the groove depth 
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NEXT LDT Thruster Failure Behavior Data 

• Increasing frequency of data collection that might capture the 

penetration of pits and/or grooves and subsequent changes in thruster 

telemetry and performance prior to failure 

– Increase frequency of backlight center radius aperture images (every 350 hours of 

operation) to directly measure pit and/or groove penetration 

– Obtain full-power electron backstreaming and perveance measurements every 350 

hours to try to capture changes in the operating ion optics’ grid-gap as the 

accelerator grid structural integrity is compromised 

– Obtain Fowler-Nordheim electron emission characteristics for both grids every 750 

hours in order to try to capture potential increased intra-grid deposition resulting from 

pit and/or groove penetration and subsequent undercutting resulting in deposits 

between the grids 

NSTAR ELT Pit Undercutting 
Fowler-Nordheim Characteristic 



National Aeronautics and Space Administration 

www.nasa.gov Approved for public release; distribution is unlimited 24 

Questions? 



National Aeronautics and Space Administration 

www.nasa.gov Approved for public release; distribution is unlimited 25 

NEXT – Performance Benefits vs. NSTAR 

• Thruster rated xenon throughput 

– >500 kg (analysis-based) vs. 150 kg for NSTAR state-of-art 

– Accomplish low power, high ∆V missions (Dawn-like) with fewer 

thrusters 

• Power/thrust capability 

– 6.9 kW vs. 2.3 kW maximum power to the thruster 

– 236 mN vs. 91 mN maximum thrust 

– Accomplish power-driven missions (Outer-planet) with fewer thrusters 

• Thruster specific impulse 

– 4170 s vs. 3120 s 

– Reduces spacecraft propellant mass, providing more payload 

• System throttle range 

– 11.9-to-1 PPU input power range vs. 4.9-to-1 

– Allows single thruster string use over a broad range of solar distances 
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The NEXT System 

• NEXT Ion Propulsion System Integration Test Completed with 

highest fidelity hardware developed 

– Prototype-model ion thruster 

– Flight-like propellant management system configured to operate up to 

three thrusters simultaneously 

– Thermally-compliant engineering-model power processing unit 

– Digital control and interface unit software to command and record 

telemetry from all NEXT ion propulsion subsystem elements 

NEXT Thruster String 

PPU 

LPA 

Gimbal HPA 

Thruster 

DCIU 
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Test Support Hardware – Vacuum Facility 

• VF-16 at NASA GRC (2.7 m diameter x 8 m long) 
– 10 cryogenic pumps provide  180,000 L/s xenon pumping speed 

– Full-power operating pressures of 2.5x10-6 Torr 

– All surfaces downstream of thruster lined with 1.2 cm graphite paneling 

– NEXT LDT began June 5, 2005 
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Throttle Points of Interest for Life Assessment 

• 3.52 A, 1800 V 
– First Failure Mode: Groove Wear Through (36 kh estimated) 

– Worst Case Pit and Groove Total Hours 

– Worst Case Pit and Groove Throughput 
• For all conditions with PInput>0.5 kW 

 

• 3.52 A, 1179 V 
– First Failure Mode: Groove Wear Through (42 kh estimated) 

– Worst Case Center Hole Barrel Erosion 
• Uncertainty in estimating electron backstreaming margin reduction 

– Highest Ratio of DCA Emission Current to discharge cathode flow rate 
• May have contributed to anomalous DCA erosion during NSTAR ELT 

 

• 1.20 A, 1800 V 
– First Failure Mode: Groove Wear Through (200 kh estimated) 

– Worst Case Outer Aperture Erosion 
 

• 1.00 A, 275 V 
– First Failure Mode: Groove Wear Through (45 kh estimated) 

– Worst Case Pit and Groove Throughput 
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Throttle Table Points of Interest 

• For all operating conditions groove wear through is expected to be the first 
failure mode (>36,000 h of operation expected) 

– Should operate at other conditions of interest to: 

• Reduce risk of alternate wear mechanisms causing degradation and possible failure 

• Improve service life and thruster performance modeling capability 

Beam Voltage 

B
e

a
m

 C
u

rre
n

t 

1800 1567 1396 1179 1021 936 850 679 650 400 300 275 

3.52 36 kh 1 2 42 kh 

3.1 1 1 2 2 

2.7 1 1 2 2 2 

2.35 1 1 2 2 2 

2 3 3 3 4 3 

1.6 3 3 3 4 3 

1.2 200 kh 3 3 4 3 3 3 3 3 4 4 

1 45 kh 

Highest CRA Barrel Erosion 

Highest Ratio Je/mc 

 

Highest ORA “Ear” Erosion 

Highest Groove Erosion 

(Input Power > 0.5 kW) 

Highest Groove Erosion 

(based on throughput) 
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Structural Failure from Pit and Groove Erosion 

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000

PPU Input Power, W

Propellant Throughput, kg

Lifetime, khrs

• Primary failure mode predicted over the throttling range to be 

structural failure of the accelerator grid from groove penetration 
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Thruster Beam Profiles 

Comparison of beginning of test with 8,000-hr:         0 h    8000 h  13000 h 

• Integrated beam current:           4.015A     3.878 A  3. 719 A 

• Error in measured current vs. measured:          14%    10%  6% 

• Peak beam current:          4.16 mA   4.17 mA  4.12 mA 

• Beam flatness:            0.831    0.831  0.841 

• Divergence:           24.54    25.34  25.67 

• Ft:            0.976    0.976  0.974 
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