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A major modification of the refrigeration plant and heat exchanger at the NASA Glenn
Icing Research Tunnel (IRT) occurred in autumn of 2011. It is standard practice at NASA
Glenn to perform a full aero-thermal calibration of the test section of a wind tunnel facility
upon completion of major modifications. This paper will discuss the tools and techniques
used to complete an aero-thermal calibration of the IRT and the results that were acquired.

The goal of this test entry was to complete a flow quality survey and aero-thermal
calibration measurements in the test section of the IRT. Test hardware that was used in-
cludes the 2D Resistive Temperature Detector (RTD) array, 9-ft pressure survey rake, hot
wire survey rake, and the quick check survey rake. This test hardware provides a map of
the velocity, Mach number, total and static pressure, total temperature, flow angle and
turbulence intensity. The data acquired were then reduced to examine pressure, temper-
ature, velocity, flow angle, and turbulence intensity. Reduced data has been evaluated to
assess how the facility meets flow quality goals. No icing conditions were tested as part
of the aero-thermal calibration. However, the effects of the spray bar air injections on
the flow quality and aero-thermal calibration measurements were examined as part of this
calibration.

Nomenclature

Symbols
A Conductive heat transfer, hot wire/film
B Convective heat transfer, hot wire/film
C0, C1, C2 RTD probe total temperature flow recovery curve fit coefficients
Cα Pitch angle pressure coefficient
Cβ Yaw angle pressure coefficient
Co Total pressure coefficient (9-foot rake pressure probes)
Cq Static pressure coefficient (9-foot rake pressure probes)
E hot wire anemometer output voltage, volts
K0toK2 Flow angle prediction coefficients, degrees
l characteristic length, ft
M Mach number
N Number of data points
n coefficient, hot wire/film
P Pressure, psia
P1toP9 Flow angle probe pressures, psia
Pair Spray bar air pressure, psig
Pavg Average of P1, P2, P3, and P4, psia
Prat Ratio of static to total pressure
PS Static pressure, psia (psf)
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PS,rake Average of P6, P7, P8, and P9 (probe static pressure), psia
PT Total pressure, psia (psf)
PT,rake Equal to P5 (probe total pressure), psia
Q Measured velocity, hot wire/film
q Dynamic pressure, psi

R Specific gas constant for air, 1716 ft2

(sec2◦R)

Re Reynolds number
T Temperature, ◦C(◦F )
Ts Static temperature, ◦C(◦F )
TT Total temperature, ◦C(◦F )
TT,davg Average of the 24 D-corner total temperature measurements, ◦C(◦F )
TT,dc D-corner total temperature measurement, ◦C(◦F )
U Velocity, knots (ft/sec, mph)
X Axial coordinate with axis origin at bellmouth/test section weld seam, inches
Y Spanwise coordinate with axis origin at the test section inner wall, inches
Z Vertical coordinate with axis origin at the test section floor, inches
α Pitch flow angle, degrees
β Yaw flow angle, degrees
γ Ratio of specific heats, 1.4
Δ Measured pitch or yaw angle offset, degrees
Subscript
arm 6-degree of freedom inspection arm
array 2D RTD array
avg Average
bm Tunnel bellmouth
i Data point index
j Data point index
level Digital level, inclinometer
local Test section parameters after all calibration coefficients have been included
rake 9-ft survey rake
ruler Ruler or tape measure
ts Tunnel test section

I. Introduction

During January and May 2012, aero-thermal calibration data were acquired at the NASA Glenn Research
Center (GRC) Icing Research Tunnel (IRT). Typically full calibrations are completed every five years. The
most recent previous full calibration of the IRT was completed in early 2009. The calibration testing
performed in 2012 was completed as a result of a major facility upgrade of the refrigeration plant and the
heat exchanger. The aero-thermal calibration is one of several tests, including the icing cloud calibration1,
and flow quality surveys in the settling chamber2, which were performed to re-qualify the IRT after the
upgrade. In addition to this work, air flow and liquid water concentration simulations3 of the IRT were
completed by students at the University of Virginia.

The data presented here was acquired using the 9-ft horizontal survey rake, the 2D Resistive Temperature
Detector (RTD) array, hot wire vertical survey rake, and the quick check survey rake. The temperature data
acquired using the 2D RTD array was used to calibrate the tunnel total temperature probes, which is an
array of 24 RTDs located upstream of the test section on the D-corner turning vanes. The static and total
pressure data acquired using the 9-ft survey rake were used to calibrate the tunnel north and south pitot-
static probes located at the bellmouth of the test section. The data that were acquired using the hot wire
rake were used to evaluate turbulence intensity.

Data acquired during the 2012 calibration entry shows that the pressures are consistent with previous
calibrations and there has been an improvement on the spatial temperature deviation of the heat exchanger.
The temperature profile in the IRT was found to be much more uniform with the new heat exchanger, both
at D-corner and the test section, than with the previous heat exchanger.
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II. Icing Research Tunnel Description

A schematic of the NASA Glenn Icing Research Tunnel (IRT) is shown in Figure 1. The IRT is a closed
loop atmospheric tunnel. The test section is a 6-feet high by 9-feet wide and 20-feet in length. The spraybars
which inject atomized water into the flow stream to create the icing conditions are located in the settling
chamber between the D-corner turning vanes and the bellmouth inlet.

Operational velocities of the IRT range from 25 knots to 350 knots and tunnel total temperature is
controllable from +20 ◦C total temperature to −40 ◦C test section static temperature. The recently upgraded
heat exchanger which enables this range of temperatures is located between C and D corners on the left in
Figure 1. Additionally, the upgraded refrigeration plant is located adjacent to the tunnel near the C-corner.
Pushing airflow around the circuit is a 5000-horsepower electric motor driving a 25-foot diameter, 12-blade
wooden fan4.

Figure 1. Schematic of the NASA Glenn Icing Research Tunnel

III. Test Hardware and Facility Instrumentation

A. Test Section Resistive Temperature Detector

The 2D Resistive Temperature Detector (RTD) Survey Array is a 7x7 grid of RTDs shown in Figure 2.
Probes are spaced at 0%, ±25%, ±50%, and ±75% of the test section both horizontally and vertically.
Probes extend 7-inches forward of the leading edge of the 2D RTD array. The leading edge of the probes
are positioned 15-inches downstream of the model turn table center. The total temperature probes used in
the array are 4-wire RTDs with a ceramic capsule sensor. Total temperature flow recovery testing occurred
in 20055.

B. 9-foot Survey Rake

The 9-foot survey rake (Figure 3) is used to measure total pressure, static pressure, thereby enabling calcu-
lations of velocity and flow angularity. The rake is supported in the center with a vertical strut and at both
ends by plates with a bolt pattern which enables positioning of the rake every 6-inches above and below
vertical centerline. Additionally, the 9-ft survey rake probes are positioned at the axial position of the center
point of the model turn table. Figure 3 illustrates the left handed X-Y-Z coordinate system that is used
with the points of origin as follows. The origin for the X-axis is at the bellmouth to test section weld seam.
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Figure 2. RTD Array installed in the IRT test section. (a) View looking downstream. (b) View looking upstream.

The origin for the Y-axis is the bottom of the inner wall where the wall meets the floor. The origin for the
Z-axis is at the floor where the floor meets the inner wall.

The pressure probes, are nominally positioned in 9-inch increments. The hemispherical-head, 5-hole
pressure probes (Figure 4) have a single total pressure probe at the center front of the probe to measure
total pressure, and 4 additional pressure ports which are in 90 ◦ increments around the probe head at 45 ◦

offsets to measure pitch and yaw angle of the airflow. In addition there are 4 static pressure ports 5.75-inches
downstream of the head, at 90 ◦ increments (Figure 4). The probes were all calibrated for Mach 0.1 through
0.6 at the NASA Glenn 3.5-inch diameter free jet calibration facility6.

Figure 3. The 9-foot horizontal survey rake installed at vertical centerline in the IRT test section

C. Facility Instrumentation

Standard facility instrumentation includes the north and south bellmouth pitot-static rakes and an array of
RTDs in D-corner. Facility total temperature measurements were acquired from a 24-probe array (4 rows
of 6 RTD probes) mounted on the leading edge of the D-corner turning vanes. The north and south pitot-
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Figure 4. Hemispherical head probe total pressure ports. (A-A) total pressure port detail, (B-B) static pressure port
detail.

static rakes measure total pressure and delta pressure, and are heated to prevent icing due to their position
downstream of the spraybars.

D. Steady-State Data Acquisition System

Real time steady-state data acquisition and data display are provided by the NASA Glenn Escort Alpha
System. This is the standard data acquisition and data display system used in the large test facilities at
NASA Glenn. The system accommodates inputs from the Electronically Scanned Pressure (ESP) System,
the facility distributed process control system, and any analog devices such as thermocouples, RTDs and
pressure transducers. This system records all steady-state pressures and temperatures from the standard
facility instrumentation and test specific hardware including the 9-ft survey rake and the 2D RTD array. It
also records facility operational parameters such as spraybar air pressure and drive fan speed. An Escort
program was specifically written to support the aero-thermal calibration in the IRT.

The ESP system used during the test program utilized thirty-two port rack mounted modules. For this
test program ±5 psid modules were used. The accuracy in the pressure measurements made with the ESP
System is 0.1 percent of full-scale of the module, or 0.005 psia for the ± 5 psid modules used.

E. Hot Wire Survey Rake and Instrumentation

A custom hot wire system has been developed for use at NASA GRC and is shown in Figure 5(a). The
hot wire or film is connected to the TSI Incorporated (Shoreview, MN) IFA-100 Anemometer, Model 150
Transducer module. The output from the anemometer is fed into the National Instruments (NI) Corporation
(Austin, TX) Data Acquisition (DAQ) System which is connected to a laptop with NI Labview software. A
custom Labview program is written for the hot wire/film sensors which has the capability to accommodate up
to 16 sensors across 4 PXI-6115 DAQ cards. A button trigger is connected between the hot wire data system
and the facility steady-state data acquisition system, Escort, which enables both systems to be triggered
simultaneously.

Turbulence intensity data were acquired with the hot wire/film survey rake shown in 5(b). The hot
wire/film is installed so as to position the wire/film horizontally or along the Y-axis with respect to the
test section. Prior to the construction of this rake the hot wires were mounted to the top of the 9-ft survey
rake. Calibrations for the hot wires are performed in situ in the wind tunnel test section from minimum to
maximum velocity at the beginning of testing for each position. Testing with the hot wire rake is only done
in the incompressible regime, M < 0.3. Only single wires/films normal to the axial velocity are used as the
calibration is conducted in situ.
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Figure 5. Hot wire/film anemometry system: (a) NI DAQ and IFA-100 (b) hot wire rake installed in the IRT test
section with five hot wires and a pitot-static probe

IV. Test Matrix and Test Procedures

The IRT was operated with normal operational procedures during the aero-thermal calibration. Standard
test procedure was to acquire two data readings for each test condition. Each reading was an average of 10
scans at a rate of 1 scan per second. For the 9-ft survey rake, and the hot wire survey rake, prior to taking
a reading, the spatial standard deviation of the D-corner RTDs was verified to be within ±0.5 ◦C. During
testing of the 2D RTD array, in addition to verifying the spatial standard deviation, the temporal standard
deviation of the D-corner RTDs was verified to be within ±0.1 ◦C.

Table 1 illustrates the data points that were acquired with the 9-ft survey rake. During testing static
temperature was held at 4.0 ◦C7.

Table 2 summarizes the data points that were recorded for the 2D RTD Array. During testing of the 2D
RTD array, total temperature was set instead of static temperature. The operators were then instructed to go
“hands off” of the temperature controls. To allow for a manageable total temperature swing of approximately
±5.0 ◦C, for each new sequence, total temperature was stabilized at the target temperature, i.e. −10.0 ◦C,
at 220 knots prior to acquiring data. The data at the remaining velocities were acquired in the order of 50,
130, and 300 knots. Additionally, the spraybar air pressures were tested in the sequence of 0, 60, 30 psig.
This was done so the spraybars would stabilize at their normal operating temperature of 80 − 85 ◦ more
quickly.

The hot wire survey rake test points are illustrated in Table 3. Turbulence data were collected at a tunnel
total temperature of 7.8 ◦C to prevent the tunnel static temperature from dropping below freezing.

V. Data Reduction

U.S. customary units of measurement are used in the following data reduction. However, the icing
community prefers a mixed set of units including airspeed in knots and temperature in degrees Celsius ( ◦C).
Therefore, the details on the data reduction are presented as they are carried out in English units. The final
results have been converted to and are presented in the units used by the icing community.

For the following calculations, the bm subscript refers to measured or calculated parameters associated
with the two bellmouth pitot-static probes. The subscript rake refers to measured or calculated parameters
associated with any of the probes on the 9-ft survey rake. Additionally, the subscript local refers to the
measured or calculated corrected rake parameters which have been corrected by individual probe calibration
coefficients and represent the true local properties in the test section. All of the local total pressures, static
pressures, and Mach numbers are normalized by bellmouth parameters to arrive at recovery ratios. All of
the equations utilized in the data reduction were compressible flow equations8.
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Table 1. Test matrix for the 9-ft survey rake.

Rake Position Static Test Section Spraybar air pressure,

(horizontal) temperature, TT,ts
◦C Airspeed, Utsknots Pair, psig

CL 4.0 50,90,120,150,170,200,250 0,30,60

CL-6′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL+6′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL-12′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL+12′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL-18′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL+18′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL-24′′ 4.0 50,90,120,150,170,200,250 0,30,60

CL+24′′ 4.0 50,90,120,150,170,200,250 0,30,60

Table 2. Test matrix for the RTD Array.

Test Section total Test Section Spraybar air pressure,

temperature, TT,ts
◦C Airspeed, Utsknots Pair , psig

-30 50,130,220,300 0,30,60

-20 50,130,220,300 0,30,60

-10 50,130,220,300 0,30,60

-3 50,130,220,300 0,30,60

-2 50,130,220,300 0,30,60

-1 50,130,220,300 0,30,60

0 50,130,220,300 0,30,60

1 50,130,220,300 0,30,60

2 50,130,220,300 0,30,60

3 50,130,220,300 0,30,60

5 50,130,220,300 0,30,60

Table 3. Test matrix for the hot wire survey rake.

Rake Position Test Section total Test Section Spraybar air pressure,

(lateral) temperature, TT,ts
◦C Airspeed, Utsknots Pair , psig

CL 7.8 50,90,120,150,170 0,30,60

CL-18′′ 7.8 50,90,120,150,170 0,30,60

CL-36′′ 7.8 50,90,120,150,170 0,30,60

CL+18′′ 7.8 50,90,120,150,170 0,30,60

CL+36′′ 7.8 50,90,120,150,170 0,30,60
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A. Facility Calculations

The bellmouth pitot-static rakes in the IRT measure total pressure and delta pressure. Equation 1 shown
below calculates the average that is taken of the bellmouth total pressure between the north and south
pitot-static probes.

PT,bm =
(PT,north + PT,south)

2
(1)

Static pressure was computed by the difference of total pressure from delta pressure. The north and
south probes were calculated separately.

PS,north = PT,north −ΔPnorth, PS,south = PT,south −ΔPsouth (2)

The static pressure of the bellmouth was then averaged using the static pressure readings from the north
and south bellmouth pitot-static probes, equation 3.

PS,bm =
(PS,north + PS,south)

2
(3)

Facility total temperature, equation 4, was calculated based on the average of the 24 RTDs on the leading
edge of the D-corner turning vanes.

TT,davg =
1

24

24∑
i=1

TT,d,i (4)

Utilizing the bellmouth total pressure and static pressure, Mach number at the bellmouth is computed
using equation 5.

Mbm =

√
2

γ − 1

[
(
PT,bm

PS,bm
)

γ−1
γ − 1

]
(5)

Facility dynamic pressure, equation 6 is then calculated using bellmouth Mach number, Mbm and bell-
mouth static pressure PS,bm.

qbm =
γ

2
PS,bm ·M2

bm (6)

B. 9-foot Survey Rake Calculations

Data collected by the 9-ft survey rake is used to construct Mach number and static pressure calibration
curves. Additionally, the collected data is examined to check for flow quality in the facility.

The average of the four static pressure taps on each of the 11 probes was used to calculate the rake static
pressure for each probe.

PS,rake =
(P6 + P7 + P8 + P9)

4
(7)

Mach number was computed based on the rake total pressure to static pressure ratio.

Mrake =

√
2

γ − 1

[
(
PT,rake

PS,rake
)

γ−1
γ − 1

]
(8)

The correction equations or local values for total and static pressure are based on the rake Mach number.
Co and Cq are functions of Mrake and are experimentally determined during calibration of the pressure probe
flow angle6. Local static and total pressure are computed as shown.

PT,local = PT,rake − Co(Mrake) [PT,rake − PS,rake] (9)

PS,local = PT,local − (PT,rake − PS,rake)

Cq(Mrake)
(10)
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The local test section Mach number (equation 11) for each probe is determined using PS,local and PT,local.

Mlocal =

√
2

γ − 1

[
(
PT,local

PS,local
)

γ−1
γ − 1

]
(11)

Local dynamic pressure in the test section is calculated per equation 12 below.

qlocal =
γ

2
PS,local ·M2

local (12)

C. Flow Angularity

The following equations are used to calculate pitch and yaw flow angle data from the pressure data obtained
from the 45 ◦ offset pressure ports on the front of the hemispherical head probe. The average of these four
45 ◦ offset pressure ports is used to calculate Pavg, equation 13.

Pavg =
(P1 + P2 + P3 + P4)

4
(13)

The pressure coefficients Cα and Cβ are calculated for both pitch and yaw. The pitch pressure coefficient,
Cα, equation 14 is calculated using the 45 ◦ offset pressure ports in the pitch plane, P1 and P3 and the
difference between the total pressure in the center of the hemispherical probe, P5, and the average of all four
45 ◦ offset pressure ports. Similarly, the yaw pressure coefficient, Cβ , equation 15 is calculated using the 45 ◦

offset pressure ports in the yaw plane, P2 and P4, and the difference between the total pressure in the center
of the hemispherical probe, P5, and the average of all four 45 ◦ offset pressure ports.

Cα =
(P3 − P1)

(P5 − Pavg)
(14)

Cβ =
(P4 − P2)

(P5 − Pavg)
(15)

Pitch angle, α, and yaw angle, β, are calculated using previously determined pitch and yaw pressure
coefficients and Mrake.

α = K0,α(Mrake) +K1,α(Mrake)Cα +Δα,arm +Δα,level (16)

β = K0,β(Mrake) +K2,β(Mrake)Cβ +Δβ,arm +Δβ,ruler (17)

The coefficients K0,α, K1,α, K0,β, and K2,β were experimentally determined6. The delta coefficients are
measurements made using a computer-aided inspection arm, an inclinometer, and a ruler.

D. Turbulence Intensity

During this particular test entry one hot wire and four hot film probes were used. The hot wire was positioned
near the ceiling at 60-inches and the hot films were places in the remaining four slots below the hot wire.
The hot wire and film probes were calibrated in situ in the IRT at the beginning of testing at each new
position. In situ calibration data sweeps were completed at velocities of 50, 90, 120, 150, and 170 knots and
with the spraybar air pressure at 0 psig. These in situ calibration data sweeps and a known velocity from
a 5-hole hemispherical head probed attached to the side of the rake were used to develop coefficients A, B
and n seen in King’s Law9 below, (equation 18).

E2 = A+B ·Qn or Q =

[
(E2 −A)

B

]1/n
(18)

Once the coefficients were developed, King’s Law was again used to calculate measured velocity from the
hot wire/film voltages for each acquired data point. The variable Q is the measured velocity, and since single
wires or films were used, it is assumed that Q equals the axial component only. Using the now calculated
velocity values, a temporal mean velocity and standard deviation for each steady state data point, acquired
at a rate of 1kHz for 10 seconds, is calculated. Dividing the root mean square of the instantaneous velocity
by the mean velocity yields turbulence intensity.
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E. 2D RTD Array Calculations

Total temperature data recorded by the 2D RTD array requires a flow recovery correction, equation 19.
Experiments to determine the flow recovery coefficients for the RTDs on the 2D RTD array were performed
in 20055.

TT,local = (C0 + C1Mts + C2M
2
ts)TT,array (19)

This local total temperature is then used to develop a calibration curve between the 2D RTD array in
the test section and the D-corner RTDs.

VI. Discussion of Results

Table 4 is a summary of Aero-Thermal flow quality goals for an icing wind tunnel7. The IRT flow
quality meets or exceeds the goals for all of the parameters listed in Table 4. The data presented here is
a representative set of results. A NASA contractor report will be published soon and will include all data
acquired during the 2012 test.

Table 4. Aero-thermal flow quality goals for an icing tunnel test section.

Parameter Measurement Test Section Spatial Tunnel Centerline

Uncertainty Uniformity Temporal Stability

Airspeed ±1% ±2% ±2%

Static air temperature, -30 through +5 ◦C ±2 ◦C ±1 ◦C ±0.5 ◦C
Flow Angularity ±0.25 ◦ ±2 ◦ N/A

Turbulence (Pair = 0psig) ±0.25% < 2% ±2%

Turbulence (Pair = 60psig) ±0.25% < 2% ±2%

A representative set of results at 150 knots for Mach number is show in Figure 6. Mach number in the
test section, Mts, is normalized by Mach number at the bellmouth, Mbm, and plotted with respect to the
width of the test section in inches, Figure 6. Delta Mach number, each major division on the vertical axis in
Figure 6 helps to illustrate the absolute Mach number variation seen in the data. Also, examining Figure 6,
it is seen that the spraybar air injection has a minimal affect on Mach number, increasing the variation in
Figure 6(a) from 0.00345 to 0.0046 seen in Figures 6(b&c).

A representative set of results at 150 knots for total pressure is shown below in Figure 7. Total pressure
in the test section, PT,ts, is normalized by total pressure at the bellmouth, PT,bm, and plotted with respect
to the width of the test section in inches, Figure 7. A delta total pressure is seen in the bottom right corner
of the plots to help relate the quantity of one tick in Figure 7 to the ratio presented. Additionally, examining
Figure 7, it is seen that the spraybar air injection does have an affect on the total pressure distribution in
the test section. The largest effects of the spray bars are seen at lower test section airspeeds and near the
test section boundaries. For example in Figure 7 the effect of the spraybars is more pronounced at the inner
wall (0-24 inches) and the outer wall (84-108 inches). The flow in the core of the test section is minimally
affected.

A representative set of results at 150 knots for static pressure is shown in Figure 8. Static pressure in the
test section, PS,ts, is normalized by static pressure at the bellmouth, PS,bm, and plotted with respect to the
width of the test section in inches, Figure 8. A delta static pressure is shown in the bottom right corner of
the plots to help relate the quantity of one tick in Figure 8 to the ratio presented. Also, examining Figure 8
further, it is seen that the spraybar air injection does not have a significant effect on the static pressure
distribution in the test section.

A representative set of results at 130 knots for total temperature is shown in Figure 9. Test section
total temperature, TT,ts,array,

◦ C, is shown plotted with respect to the width of the test section in inches,
Figure 9. At a total temperature test point of −1◦C the test section temperature variation is no more
than ±0.25◦C. However, at colder total temperature test points of −30◦C the test section variation is
approximately ±0.5◦C. This larger variation is seen because the 80− 85◦C spraybar air is more pronounced
in the test section at the much colder temperatures near the bottom of the IRT operating range.
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Figure 6. Mach number distribution data from the IRT test section. Data collected using the 9-ft survey rake mounted at
9 vertical positions over several tunnel runs. The test section Mach number data was normalized using the bellmouth
Mach number measurement. Approximate Mach number delta is indicated for each test section setting. (a) Uts =
150knots, Pair = 0psig. (b) Uts = 150knots, Pair = 30psig. (c) Uts = 150knots, Pair = 60psig.

Figure 7. Total pressure distribution data from the IRT test section. Data collected using the 9-ft survey rake mounted
at 9 vertical positions over several tunnel runs. the test section total pressure data is normalized using the bellmouth
total pressure measurement. (a) Uts = 150knots, Pair = 0psig. (b) Uts = 150knots, Pair = 30psig. (c) Uts = 150knots,
Pair = 60psig.
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Figure 8. Static pressure distribution data from the IRT test section. Data collected using the 9-ft survey rake mounted
at 9 vertical positions over several tunnel runs. (a) Uts = 150knots, Pair = 0psig. (b) Uts = 150knots, Pair = 30psig. (c)
Uts = 150knots, Pair = 60psig.

Figure 9. Total temperature data from the IRT test section at D-corner total temperature of −1 ◦C. Data collected
using the 2D RTD array. (a) Uts = 130knots, Pair = 0psig. (b) Uts = 130knots, Pair = 30psig. (c) Uts = 130knots,
Pair = 60psig.
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Figure 10. Flow angularity data in the IRT from the 9-ft survey rake mounted in the 9 vertical positions completed
during testing. (a) Uts = 150knots, Pair = 0psig. (b) Uts = 150knots, Pair = 30psig. (c) Uts = 150knots, Pair = 60psig.

A representative set of results at 150 knots for the test section flow angularity as measured by the 5-hole
probes mounted on the 9-ft survey rake is shown in Figure 10. The vectors shown in Figure 10 only reflect
the magnitude and direction of the local air flow, but not airspeed. For reference, +1◦ in pitch and yaw is
noted on each figure. Overall, the flow angularity in the IRT test section is acceptable for an icing facility.
The wall flow angularity behaviour has been seen in previous data sets as far back as 2004. Most of the
variation in the flow angle orientation is probably due to disturbances generated by the spraybars

Data shown in Figure 11 illustrates the turbulence intensity seen at the horizontal and vertical centerline
of the test section with a spraybar air pressure of 0 psig. Turbulence intensity, u′/U , is shown plotted with
respect to test section velocity, U(kts), Figure 11. Facility changes that could affect turbulence intensity are
summarized in the bottom right of Figure 11. The standard deviations shown on the 2009 and 2012 data
are from 4 time traces taken at the same condition. The data is not available to develop standard deviations
for data from 2005 and before.

A representative set of results at 150 knots for turbulence intensity is shown in Figure 12. The turbulence
intensity, u′/U , is plotted with respect to the turn table centerline survey plane. A higher turbulence at
centerline is typically seen due to the spray bar center support. Another contributing factor which is new
this calibration cycle, is 7 air-only atomizing nozzles located at the bottom center of the spraybars. These
were added to get the icing cloud to mix appropriately. The IRT will not have the low-turbulence levels of a
wind tunnel used for aerodynamics testing due to the lack of flow manipulators like screens and honeycomb
straighteners due to the influence of the sparybars. The turbulence intensity has been found to be 2% or
less.

As mentioned, one of the primary goals of this calibration cycle was to update the aero-thermal calibration
curves used in the computing subroutine IRTAT which is used to set conditions in the test section. Figure 13,
Figure 14, and Figure 15 are the updated calibration relationships for Mach number, static pressure, and
total temperature. It can been seen that the curves are linear in nature which is what is most desirable for
calibration relationships.
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Figure 11. IRT Turbulence Intensity, Historical Comparison @ CL/CL, Pair = 0psig.

Figure 12. Turbulence Intensity Uniformity, u′/U ,from the hot wire rake. Uts = 150knots, Pair = 0psig.
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Figure 13. Mach number calibration for the IRT from the 2012 full aero-thermal calibration.

Figure 14. Static pressure calibration for the IRT from the 2012 full aero-thermal calibration.
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Figure 15. Total temperature calibration for the IRT from the 2012 full aero-thermal calibration.

VII. Summary and Conclusions

The data acquired during the 2012 calibration entry shows that the pressures are consistent with previous
calibrations and there has been an improvement on the spatial temperature deviation of the heat exchanger.
The temperature profile in the IRT was found to be much more uniform with the new heat exchanger than
it was with the previous heat exchanger. The turbulence intensity has been found to be 2% or less. Test
section spatial uniformity and tunnel centerline temporal stability meet the aero-thermal flow quality goals
listed in Table 4. A new set of calibration curves have been developed and implemented for static pressure,
Mach number, and total temperature.
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