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ABSTRACT

After evaluating NASA space architecture goals, the Office of Chief Technologist identified the need for developing
enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat
interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally
conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and
predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It
was found that contact resistance resulting from different mechanical attachment technigues played a significant
rale in the form and functionality of a successful design.
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Utilizing a reverse turbo Brayton
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A flight-like radiator design was developed
for the CBRS design (right). The system
packaging in the test chamber also used a
flight-like approach (left).

Image courtesy of Active Cooling Technologies, Inc. ( ACT)
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Broad area cooled shield

The CBRS design uses the
pictured broad area cooling
shield to intercept heat radiating
into the tank. Heat conducted
into the tank through
penetrations, like the titanium
strut shown below, is also
intercepted.
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Toemperature (K)

Discrete cooling
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Distance along strut starting from cold end
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Initial conceptual sketch
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Four steps

1. Sizing with ‘ideal’ model

2. Detailed design

3. Validate with most detailed model
4. Troubleshoot and redesign
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Semi-flexible ETP copper bus bar for prototype

Flexible Insulated Busbar

Storm copper components, Co.
http://store.electrical-insulators-and-copper-ground-bars.com/flexible-insulated-busbar.html
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Il choose 400 W/m-K for the ELI copper

that's 99.9% pure (see STCHvol. 2 for a graph
of thermal conductivity as a function of T for
different copper alloys. They show 99.95% ETR,

Shortest distance
between the two
attachment points

but that's okay, it can be estimated based on the trends I_mc1 = §.25in
of decreasing copper content cunves.
W W
k =4 —— = 40—
FCL cm-K m-E
Shape efficiency v =07 ¢
Lreq
Heat transfer length of the FCL Leep = = §92%in
g
End piece efficiency (how well the foils are attached to the end piece) °
choose 1.0 if welded, and down to 0.3 for other attachment methods g = 1.0
Foil thickness t = lmm
. MNe o =3
Mumber of foils foils
Width of foils Wgep = 20mm = 0.787-in
Heat transfer cross sectional area Apcr = Wrer | Neoits t) = G0-mm” R

Actual cross sectional area

(for packaging concerns nas A .
only; this number is mp = 09 A ctual = L _ 63.158-mm”
irelevant to heat transfer) p
kpep A B
Pure conduction conductance Gpep = FCL 7ECL = ﬂ.lﬂﬁ-L
LecL K
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one dimensional, steady
state, constant properties,
no heat generation model

utilizing a few flexible
thermal link specific
parameters and estimates
(shape efficiency, for
example)

More information on this
approach can be found in
the Spacecraft Control
Thermal Handbook,
Volume 1.
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First iteration hardware
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First iteration hardware
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. Thermal link

. Indium Foil

. Original Collars

. Titanium Strut
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Prototype pictures
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Prototype pictures
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Step 3) Validation
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Step 3) Validation

Ti 6Al 4V, t = 0.0236 in, actual geometry of strut
Tc = 20.23K, Th = 225K, Thac = 78.9 K, Trad = 220K
FCL: Storm's Maxiflex Cu Bus (20mm X 1mm X 3 layers)

Attached by "wrapping” (see schematic)
JIP Elchert 5/4/2012
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FCL's attachmentlocation on the strut [inches]

- TANK; h = 100 W/m2-K; Al Tape Covered FCL middle segment
= TANK; h = 1000 W/m2-K; Al Tape Covered FCL middle segment
- TANK; h= 10 W/m2-K; Al Tape Covered FCL middle segment

- TANK, Total Conductance = 0.02 W/K

- =Tank; Total Conductance = 0.013 W/K

—FCL; h = 100 W/m2-K; Al Tape Covered FCL middle segment
—FCL; h = 1000 W/m2-K; Al Tape Covered FCL middle segment
—FCL; h = 10 W/m2-K; Al Tape Covered FCL middle segment
——FCL, Total Conductance = 0.02 W/K

—FCL, Total Conductance = 0.013 W/K
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0.016 gap in G13709MRA049
educed to 0.007,due to assembly at nominal part sizes.

Nominal dimensions used.

Expansion Coefficients:
+2024 Al Plate = 1.255E-5
*Ti-6Al-4V = 4.8E-6
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Output Set: NO THERMAL EFFECTS
Deformed(0.0781): Total Translation
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Contact Pressure (psi)
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Initial 0.007” assembled gap reduced to
MO gap on one side due to thermal contraction of parts.

COutput Set 100K, CASE
Deformed[0.0754); Total Translation

25



Average contact pressure = 927 psi
Standard deviation = 1535 psi

This doesn’t seem correct,
due to sleeve binding; would result in
plastic deformatio

COutput Set: 100K CASE
Deformed(0.0754): Tatal Tranzlation
Contour: Contact Pressure

26

00,

466,667

433333

400,

36E.BET ——

333333

300.

2BE.BEY

2323323

200.

166.667

133333

100,

B6.EBEY

333333

0.



TFAWS 2011 — August 15-19, 2011



TFAWS 2011 — August 15-19, 2011



-~
shroud

(K)

220
220
220
220
220

MLI

1.1590
1.1491
0.2483
0.2477

0.2480

T sup
ring

(K)

249
249
250
248
248

Struts

0.6315
0.6052
0.1347
0.1991

0.1638

Sup
ring
Heat
(W)

28.52
28.52
28.52
28.52
28.52

Stand-
offs

N/A
0.1818
0.0607
0.0606

0.0606

T reject

(K)

N/A
220
275
275
275

Vent

0.5441
0.6654
0.2237
0.3178

0.2234

Strap
cnd
(WIK)

N/A
0.013
1
0.013
0.03

Total

2.3346
2.6015
0.6674
0.8252

0.6958

Mass
flow

(9/s)

N/A
N/A
2.0
2.0
2.0

MLI

N/A
N/A
6.0659
6.0692

6.0676

-~
shield/

cooler(

K)
N/A
199
77.2
77.2
77.2

Struts

N/A
N/A
1.8704
1.6446

1.7702

Thermal Desktop Model: Summary of Results (Kashani results)

Q

cooler

(W)

N/A
N/A
11
11
11

Manifol
d

N/A
N/A
1.6293
1.239

1.6326

P input
(W)

N/A
N/A
277
277
277

Total

N/A
N/A
9.5656
8.9528

9.4704
Page 29



Reduction in heat leak

Reduction in strut heat leak of roughly 70%

Temperature gradient across thermal link of roughly 10K;
temperature gradient drives the design less than
conductance

Fin efficiency still above 90%

Using bus bar for the prototype was economical; a true
flexible foil copper thermal link with state of the art end
pieces would perform better (eliminates some contact
resistances)
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Extra: Intro. to general strut heat transfer NFSA

« Boundary conditions
« Conduction

« Radiation

* Insulation
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Textbook conduction

y K(T) = a +bT + cT* b
T e | S ri;'” _ ‘ T.'-.-
N ] |
o de T0)=T. = 6(T(0)=06(T,)
T T(L)=T, = 6(T(L))=6(T)
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Figure 26, - Total heat-transfer rate through strut as function of internal and external emissivity,

Figure 8: In their analysis, the external, large, isothermal surroundings temper-

ature was taken to be OK.

Boyle, Robert J. and Richard H. Knoll, “Thermal analysis of shadow shields and structural members in a vacuum.” D-4876, NASA Lewis Research Center, 1968
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Comparison of hypothetical
configurations as a function of internal
emissivity

Stainless steeltube, 12 inches in length, 1 inch in diameter, 0.06 inch wall thickness
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Disclaimer

All copyrighted works were adapted partially—never in whole—for fair use and informational
purposes only. All pictures belong to the original owners and were shown in a private setting
meant to spur thought, learning, and discussion. We do not use those works for commercial
purposes nor do we claim credit for anything not expressly declared to have been created by the
fine folks at the NASA Glenn Research Center. Anyone interested in more information about
those resources will be able to find the original copyrighted works in the bibliography shown
below.

All trademarks are the owner’s alone and references to companies should be considered neither
endorsements nor rejections of said company.

All opinions are those of the presenter and not necessarily those of NASA
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