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1 Abstract

Engineers working to understand and reduce crvogenic boil-off must solve
a variety of transport problems. An important class of nonlinear problems
involves the thermal and mechanical design of cryvogenic struts. These classic
problems are scattered about the literature and typically require too many
resources to obtain. So, to save time for practicing engineers, the author
presents this essay. Herein, a variety of new, old, and revisited analytical
and finite difference solutions of the thermal problem are covered in this es-
say. along with commentary on approach and assumptions. This includes
a few thermal radiation and conduction combined mode solutions with a
discussion on insulation, optimum emissivity, and geometrical phenomenon.
Solutions to cooling and heat interception problems are also presented, in-
cluding a discussion of the entropy generation. And the literature on the

combined mechanicalrppgy Shopaml dergent aborgogenic support struts is re-

viewed with an introduction to the associated numerical methods.
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* Inthe 1970s, MIT Electric Power Research Institute did
significant research into superconducting synchronous
generators, including cryogenics engineering research
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The most efficient cooling scheme
generates the least entropy
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Constructal Law

Finite-size systems evolve progressively _—
easier access to the imposed current P /
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Unifies thermal/fluids/thermodynamics
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Continuous cooling (solution by Tsao)
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Governing Equations
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Various cooling schemes
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Cooling scheme application: shield mounted SA
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Figure 2 SHOOT support strap with friction clamp

K.F. Weintz et al. “SHOOQOT Dewar Support Strap Design”

TFAWS 2011 — August 15-19, 2011 17



A

GIRTH RING STRAP ASSEMBLY

VAPOUR-COOLED CRYOGEN TAR
SHIELDS AND
INSULATION

T. Hirokawa et al., “Design of support strap with advanced composite for cryogenic application”
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Hilal and Boom (1977)

230 M. A. Hilal and R. W. Boom

Table Il. Optimum Temperatures, Locations, and Refrigeration Power
for Finite Number of Shields

Number
of PLJA,
shields Cycle* T,,.K T2, K T:.K  Ax/L  Ax,/L  Axs/L Ax /L W/em

304 Stainless steel (T, =4.2 K)

1 C 39.9 — —_ 0.338  0.662 - — 445
1 A 39.7 —_ — 0338  0.662 — —_ 1781
2 C 21.6 81.7 —_ 0.189 0334 0477 —_ 316

* C, Carnot cycle efficiences; A, actual cycle efficiencies.

In my estimate, the second row is actually correct. Because solving
the Carnot case gives T3 = 40K and 7z = 0.351 and when I tested
a sample real coefficient of performance, I found roughly 75 = 39K
and nAB = 0.33. So the first row—the Carnot case-was misprinted.
Hilal and Boom actually had solutions up to four stages and also stud-
ied the same solutions for Narmco 570 cloth, but that information,
being irrelevant, was omitted.
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Hilal and Boom (1977)

230 M. A. Hilal and R. W. Boom

Table Il. Optimum Temperatures, Locations, and Refrigeration Power
for Finite Number of Shields

Number

of PLJA,
shields Cycle* T,,.K T2, K T:.K  Ax/L  Ax,/L  Axs/L Ax /L W/em

304 Stainless steel (T, =4.2 K)

1 C 39.9 — —_ 0.338  0.662 - — 445
1 A 39.7 —_ — 0338  0.662 — —_ 1781
2 C 21.6 81.7 —_ 0.189 0334 0477 —_ 316

* C, Carnot cycle efficiences; A, actual cycle efficiencies.

Number of Stages 7T, (K) T2 (K) T3(K) n35 mpr  "pr
2 4.2 40.0 - 0.351 - -
3 4.2 21.1 80.7 E 0.194 0.524
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Carnot, two stage, ideal; graphical solution
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Vibrations, thermal, thermodynamic, with cooling attachment and N ca
radiation \
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