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Abstract

An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in
support of the Langley Research Center’s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body
(HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype
scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines
using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic
shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to
provide a database for shielding code validation. A range of frequencies, and a parametric study of modes
were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from
a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the
nacelle (in its 0° orientation) and three planes parallel were acquired from the array sweep. In each plane
the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is
variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound
Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal
structure.

1.0 Introduction

The Subsonic Fixed Wing (SFW) and Environmentally Responsible Aircraft (ERA) Projects of
NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program established the
research goals (Ref. 1) to develop innovative Hybrid Wing Body configurations that meet the NASA N+2
goals by enabling noise prediction methods for subsonic fixed wing aircraft fleet in 2020. The Ultrasonic
Configurable Fan Artificial Noise Source (UCFANS) investigation was conducted as part of a larger
effort to develop a hybrid wing body subsonic transport configuration with noise prediction methods to
meet the NASA SFW and ERA N+2 noise goal of 42 dB cum relative to FAR 36 Stage 4 while
achieving a —25 percent fuel burned compared to current transports.

Shielding of engine noise by airframe components is a significant consideration in the design of next-
generation transport aircraft to meet these goals. Fan tones and broadband noise are important
components of engine noise. Tones in particular tend to be characterized by discrete radiated modes with
distinctive radiation patterns. Modeling aircraft noise accurately will depend partially on knowledge of
the effect of nearby barriers on these radiation patterns. The purpose of this paper is the documentation of
a scale-mode test nacelle to validate code predictions of shielding and scattering of modal radiation from
realistic representations of turbofan inlets and exhausts when located near finite barrier surfaces.
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The test described in this paper is in support of the NASA Hybrid Wing Body (HWB) 5.8 percent
scale model test at Langley Research Center’s 14- by 22-Foot wind tunnel (Ref. 2). The HWB test will be
conducted to determine the noise characteristics of an HWB aircraft and in particular to determine the
acoustic shielding benefits from mounting the engines on the upper surface of the airframe. Jet engine
noise as well as the broadband component of turbomachinery noise will be simulated. The purpose of the
UCFANS test is to provide complimentary data on the shielding of the tonal component of turbo-
machinery noise. The data will be used to estimate shielding from the HWB configuration and to provide
a database for shielding code validation.

The UCFANS is a 5.8 percent scale model of a turbofan nacelle and fan duct. It was designed, built,
and tested for measuring acoustic shielding by prospective airframe components of modal fan tone
radiation in an anechoic chamber. Artificial (no flow) noise sources are used in the model to reproduce
the noise characteristics of a turbofan engine without the complexity of scaling down the fan. The
artificial sources also offer additional control over the mode and frequency at each point to give a more
precise database for prediction code development and validation. Model fabrication was accomplished
using rapid-prototype technology at NASA Glenn Research Center.

An array of 36 wide-bandwidth electrostatic actuators was installed in a dual annulus within the fan
duct and driven with modally phased tone signals between 7 and 40 kHz. Three rows of 24 wide-
bandwidth microphones were installed in the duct between the actuator array and the configurable
inlet/exhaust exit plane to measure the modal tone generation. Modal excitation and analysis at up to nine
simultaneous frequencies was accomplished by multiplexing. Note that this arrangement allows fine
control over tone frequency and azimuthal mode but only limited control over radial modes.

Spectral components of the in-duct microphone data corresponding to reference excitation frequencies
were spatially filtered to recover complex amplitudes of circumferential mode orders for each of the three
rings. For each circumferential mode, radial components were estimated by steering vector matrix inversion
for the three rings. Far-field radiation was measured using a three-dimensional traversing microphone rake.
Corresponding far-field data was converted to “lossless” (spherical spreading only) levels at the locations of
the microphones based on temperature and humidity data recorded for each data set.

2.0 Facility

The Acoustical Testing Laboratory (Ref. 3) (ATL) consists of a 23- by 27- by 20-ft (height)
convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive
34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-
isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design
background levels, enable the acquisition of accurate and repeatable acoustical measurements on test
articles that produce very little noise. Removable floor wedges allow the test chamber to operate in either
a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test
being conducted (the UCFANS test was conducted in the anechoic configuration). The test support
enclosure functions as a control room during normal operations.

A traverse system that can travel in the three dimensions of the chamber was utilized for acquiring
acoustic data for this test. The traverse travel was limited to motion in planes, (e.g., a horizontal or a
vertical plane, but no arcs). The traverse system drove a linear array of 13, Y4 in. condensor style
microphones spaced 3 in. apart (36 in. span).

3.0 Test Articles

The UCFANS test article was based on the 5.8 percent scale model of the candidate nacelle of the
N2A-EXTE HWB model. This turbofan engine is an ultra-high bypass fan (Ref. 4) class. This scale factor
resulted in a duct diameter of approximately 6-in., a nacelle length of approximately 1-ft, and a frequency

NASA/TM—2012-217685 2



range of ~ 5 to 50 kHz. The cut-on circumferential mode generation for the prototype turbofan, based on
rotor blade and stator vane count, is m = 10 at 2 BPF and m = -8 at 3 BPF. These modes, while not used
in this test were the basis for choosing the actuator count. The model was manufactured at the NASA
Glenn Research Center using rapid prototyping methods.

The ‘wing’ used to determine the shielded radiation was a two-dimensional % in. thick aluminum
plate. The trailing and leading edge was manufactured to match the contours of the HWB N2A model, but
the plan form was not.

3.1 Actuators

The frequency range from blade passing frequency (BPF) at approach to 3 BPF at takeoff is from just
under 8 kHz to just above 57 kHz at the 5.8 percent model scale. To accomplish this and to allow some
control over radial mode content, ultrasonic electrostatic actuators were used. These actuators have a
nominal frequency response of 95 dB SPL at 10 cm for a 9.9 V ek o peax 5 kHz input signal, = 11 dB from
4 to 110 kHz. Dedicated amplifier/power supply assemblies drove the actuators. Figure 1 shows the
dimensions of an isolated driver in the standard monopole configuration (Figure 1(a)). The drivers were
modified (by removing the ‘can’ mounted on the backside) so as to provide a dipole source (Figure 1b).

The actuators (two standard monopole versions and 4 dipole configurations) were evaluated
individually for free-field characteristics by placing them in the ATL (see Figure 2) and measuring the
response to a 100 kHz MLS input signal at a 1 m radius at 15° increments. MLS (Ref. 5) (or Maximum
Length Sequence, sometimes referred to as Gallois Sequence) is a binary pulse-width modulated signal
whose circular autocorrelation function is 8(0). The length of the sequence is 2", where N=18 was used
in this study. At a 100 kHz clock rate, this provides a 2.6 sec burst of deterministic “noise” that contains
all frequencies to above 50 kHz but which has a crest factor of 1, as opposed to Gaussian noise, which has
an effective crest factor of over 3. Cross-correlating the excitation signal with a received signal provides
the impulse response of the system being measured. A typical frequency response plot is shown in Figure
3(a) and a typical directivity plot in Figure 3(b). The responses were found to be consistent.

Each actuator and in-duct microphone was bench-tested for complex frequency response and
equalization tables created to minimize the effect of actuator non-uniformity on modal radiation and of
microphone non-uniformity on modal analysis. Actuators were driven from a dedicated D/A system using
pre-recorded 37-channel multi-frequency signals (one for each actuator and one reference) WAYV file. In-
duct microphone data were recorded on a separate dedicated A/D system, resulting in a 73-channel (one
for each microphones and reference) TDMS file (a National Instruments file format). Far-field data was
recorded on a dedicated facility A/D system, resulting in a 16-channel file (one fixed microphone, 13
traversing microphones, one reference and one timing signal). For each position of the far-field
microphone traverse, three combinations of tone excitation and a 3-sec burst of 36-channel statistically
independent random noise were recorded to provide differing radial mode mixes and to compare data
being taken in a separate test using pneumatic broadband noise generation.

3.2 Internal Microphones

The acoustic signature was measured in-duct, for modal content verification, by omni-directional
electric condenser microphones (Figure 4(a)). These microphones are typically used in the audible range
(20 to 16,000 Hz) but have been utilized for ultrasonic wildlife studies (Ref. 6). These microphones were
also evaluated for frequency response and compared to the response of a ¥4 in. B&K 4939 style
microphone (Figure 4(b)). Microphones whose response was relatively inconsistent were not used.
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(b)
Figure 1.—(a) Dimensions of Electrostatic Actuator in Monopole Configuration. (b) Photographs of
Electrostatic Actuator in Dipole Configuration.

= N

Figure 2.—Isolated Actuator Test Setup in ATL.
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Figure 3.—(a) Typical Narrow Band (NB) and Third Octave (TO) Frequency Response
of Isolated Actuator (Dipole Configuration) at 0° and 270° from Principal Radiation
Axis. (b) Typical Directivity Response (dB versus Angle) of Isolated Actuator (Dipole
Configuration).
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Figure 4.—(a) Dimensions of Electret Microphone. (b) Sample Isolated Electret Microphone
Frequency Response Curves Compared to %2 in. B&K 4939 Style Microphone.

3.3  Assembly

Figure 5 shows a CAD drawing of the model. Areas critical to far-field acoustic radiation from the
duct, such as inlet lip and duct exit dimensions were held to high fidelity, while areas not so critical to
acoustics (e.g., internal flow path) were relaxed. The rapid prototype model was cast in five sections so
that any section could be removed, replaced, or redesigned. In particular the exhaust lip and tail cone can
be removed and replaced with the inlet lip and spinner to switch the model from an exhaust to an inlet
radiation model. In these cases, the opposite end of the model is blocked off, and absorptive material
placed in the cavity to minimize internal reflections. The remainder of the model is unchanged. The
cabling for the internal drivers was routed through the center section. While this arrangement meant that
the complete internal and external lines did not completely match the target nacelle, this area is not
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primarily relevant to duct/far-field radiation, and furthermore the prime objective of the test was to obtain
the differences between the shielded and unshielded cases. The flexibility in this arrangement (i.e., no
rewiring actuators or moving the model), more than outweighed any minor effect on the radiation. An
appropriately scaled pylon was place between the nacelle and wing to simulate the mounted geometry on
the HWB.

The actuators were mounted in an annular ring, whose dimensions matched the hub-to-tip ratio of the
candidate engine nacelle. The inner path was kept constant to the spinner to minimize mode change due to
area. Two rows of 18 actuators each were mounted circumferentially, one from the hub, and the second
row from the ‘tip’. These rows were offset radially in the same axial plane, but interlocking (Figure 5).
The actuator count and distribution allowed for circumferential modes up to m=8, and two radial modes to
be controlled. Higher modes can be generated but effects like aliasing and under specification become
factors. Figure 6 shows photographs of the actuators installed.

The microphones were flush mounted internally in 3 axially distributed rows, 24 microphones each,
equally spaced in the circumferential direction (Figure 7). This distribution allows for measurement of up
to m=11, and n=2, without aliasing. Compensation curves for all microphones were obtained in-situ.

Figure 8(a) shows the fully assembled UCFANS nacelle and Figure 8(b) shows the nacelle mounted
in the ATL.

INLET lip / spinner

Forward lip & aft trailing edge

matches 14x22 model Iinesy
F Y

_._._._._'_'_____,_._.—-—-—P
EXHAUST lip / tail cone -

Figure 5.—CAD Drawings of Nacelle in Inlet and Exhaust configurations.
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Figure 6.—Actuators Installed in Rapid Prototype Model.
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Figure 7.—Electret Microphones Installed in Rapid Prototype Model.
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(b)

Figure 8.—(a) Assembled Rapid Prototype Model in Exhaust, and Inlet Configurations
(not dressed). (b) UCFANS in Exhaust Configurations Installed in ATL.

34 Shield Hardware

The wing, or shield, was an aluminum plate 68.5 in. high that spanned the entire width of the acoustic
chamber. It was decided to trade-off the three-dimensional plan form effects present on the HWB to
concentrate on the diffraction effects of the edge. For the UCFANS in the exhaust configuration, a sharp
trailing edge based on the HWB N2A-EXTE model was used. The trailing edge was made of solid rapid
prototype material and was mounted on, and blended to, the aluminum plate (see Figure 9(a)). For the
UCFANS in the inlet condition, the edge is represented by more of the hybrid wing fuselage and was
made of fiberglass. The leading edge fits over the trailing edge so that the edges may be reused as
illustrated in Figure 9(b).

3.5 In-Duct Signature Generation and Validation

See Figure 10 for a block diagram of the signature generation and in-duct measurement.
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Figure 9.—(a) Trailing Edges Representation. (b) Leading Edge Representation.
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Figure 10.—Block Diagram for UCFANS Signature Generation and Measurement.
(*Digital Acoustic Data System).

3.5.1 Signature Generation

The signature to generate the modal content was pre-calculated using the desired modes and
frequencies, and stored. Each actuator in the array was driven by a composite signal of seven excitation
frequencies, equalized for variations in individual actuator amplitude and phase response, and phased to
match the circumferential wave numbers of the modes to be radiated. A GUI program was used to create
the algorithm to read in the pre-stored signal. These 36 signatures, plus a reference signal were output by
a 200 kS/s sample rate D/A chassis, allowing the full desired frequency range to be well below the
Nyquist frequency. In addition to the 36-actuator drive channels, a reference channel consisting of the
unity amplitude cosine wave of all excitation frequencies which was output directly to the data recorder.
Because the test frequencies were limited to integer values up to 60 kHz, the excitation signals were
multiples of 1-sec duration.

An additional matrix of 36 each, 3 sec (600,000 points) Gaussian noise signals was generated and
stored in a file and applied to the test fixture actuators as an additional file. Care was taken to ensure that
although the signals are statistically independent among the actuators, the radiated signal is coherent from
test point to test point, allowing cross correlation and coherence computation between data taken at
different traverse stops or even on different test days.

To minimize test time, three unique blocks of the seven frequencies plus one the broadband signature
(Gaussian distribution) were generated, sequentially. The two sets of radial drivers could be pre-set with a
desired amplitude and/or phase relation, as a group. To achieve differing radial mode combinations, three
consecutive, 2-sec signal bursts were applied with differing drive levels to the inner and outer actuators
rows. Since the signal is known, parsing the frequency content from each block separately was
conceptually straight-forward. Effectively, this allowed for 22 separate conditions to be acquired in a
short time frame. Figure 11(a) depicts the sequential block concept and Figure 11(b) the FFT of a
representative block.
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Figure 11.—UCFANS Signature. (a) lllustrative Time History. (b) Spectral Content.

3.5.2 Signature Validation

The mode-identification microphone array consists of 72 prepolarized condenser microphones in
three rows of 24 each, allowing resolution of circumferential modes up to |m|= 11. The array is located
approximately midway between the actuators and the duct termination, at axial positions that were
determined to allow identification of radial orders » =0, 1 and 2 over the BPF, and part of the 2xBPF
frequency range 7 to 30 kHz

The 72 internal microphones, along with the reference signal, were acquired using an AC-coupled
200 kS/s A/D converter with integrated anti-aliasing filters. These time histories were streamed to disk for
later analysis. The 72-microphone signals and a reference signal were recorded at 200 kHz sampling rate
using simultaneous sampling. The cross-power spectrum of each microphone channel was computed
against the reference signal and spectral components corresponding to excitation frequencies were
isolated into a “compressed spectrum.” The compressed spectrum for each microphone was equalized
based on that microphone’s calibration curve and then the 24 spectra from each microphone ring were
spatially Fourier transformed to recover the complex amplitude of each circumferential mode order
—12 <m < 12, with m = |12| measurable, but the direction indeterminate.

For each circumferential mode m of frequency f, the radial component composition was estimated by
computing the modal cutoff ratios and axial wave numbers

for all radial orders n = 0 to one above the highest cut on.
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For microphone row A, B or C, an axial coordinate z was established relative to the midway point
between rows A and C. The transfer function from this location to each microphone row M and each
propagation mode (m,n) is then

pM,m = Zpo,m,n exp(— ikzm,nZM)

or, expressed as a transfer matrix function

[PM ]m = [HM,n ]m [Po,n ]m

Since complex circumferential mode amplitudes p,, are determined from spatial Fourier transform of
the mic data, the matrix A is inverted and multiplied with p,, to determine the radial content, p, , relative
to the center of the mic array. This inversion was done using Matlab PINV function, which has the
properties:

If rows = columns, inversion is exact
If rows > columns, inversion is the minimum norm solution (fewer modes than mic rows)
If rows < columns, inversion is least squares error solution (more modes than mic rows)

Because each test involved hundreds of far-field microphone array traverse stops, with the same
excitation signals applied to the simulator drivers, the modal composition of the excitation was computed
for a representative subset of the traverse stops. The results were compared for consistency to ensure
repeatability of the radiated sound field.

4.0 Testing

4.1 Configurations

The general procedure was to first acquire data from the nacelle for each of the isolated (un-shielded)
configurations and then repeat the data acquisition for the same geometric positions of the nacelle but
with the shield installed. The far field microphone array was traversed at the same set of spatial locations
for both shielded and unshielded configurations Thus, each nacelle configuration (exhaust radiation—
shield with trailing edge, and inlet radiation—shield with leading edge) was tested twice, once
unshielded, and subsequently with the shield in place. The key is that the array traverse was always in the
same position relative to the edge or shield, or where it would be in the case of isolated nacelle testing.

The acoustic signature used for the results reported in this paper were termed the Code Validation
Modes (CVM). These are a set of modes with content limited to the circumferential/radial resolution of
the system and with a parametric variation in frequency and modal content intended to provide a database
for code validation. Table I lists the frequency/modal content of the first three blocks of the signal; these
were followed by the Gaussian ‘block’.

The far-field traverses were taken in either horizontal (two) or vertical planes (three). Both horizontal
planes were above the model at approximately 7.5 and 10.1 diameters. The vertical planes were on either
side of the model, one on the unshielded side, and two in the shielded side (6 and 12 diameters). The array
spanned 36 in. such that the seventh microphone was centered and tracked the centerline of the model and
data were acquired with a 3 in. resolution between traverse stops. The array was then shifted 33 or 66 in.
in either the Y directions and another planar sweep acquired, providing a total lateral span of 160 in.
(due to an overlap of two microphones). The resolution at Y =+ 33 in. was 6 in.; at Y =+ 66 in. it was
12 in. Figure 12 depicts the traverse plane locations relative to the model. Photos of the model installed in
the ATL are in Figure 13.
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TABLE I.—CODE VALIDATION MODES

a) Block 1
FREQUENCY MODES CUT-OFF RATIO AMPLITUDE RATIO
7 kHz (6,0) 1.32 (Outer=1/Inner=1)
8 kHz (6,0) 1.51 (Outer=1/Inner=1)
9 kHz (6,0)/(6,1) 1.70/1.08 (Outer=1/Inner=1)
11 kHz (8,0)/(8,1) 1.59/1.12 (Outer=1/Inner=1)
12 kHz (8,0)7(8,1) 1.73/1.22 (Outer=1/Inner=1)
13 kHz 2,0)/(2,1)/(2,2) 7.17/2.07/1.08 (Outer=1/1nner=1)
14 kHz (6,0)7(6,1)/(6,2) 2.64/1.68/1.07 (Outer=1/Inner=1)
b) Block 2
FREQUENCY MODES CUT-OFF RATIO AMPLITUDE RATIO
7 kHz (3,0 1.01 (Outer=1/Inner=1)
8 kHz (3,0 1.15 (Outer=1/Inner=1)
9 kHz (3,0 1.30 (Outer=1/Inner=1)
11 kHz (8,0)/(8,1) 1.59/1.12 (Outer=1/1nner=0)
12 kHz (8,0)/(8,1) 1.73/1.22 (Outer=1/1nner=0)
13 kHz 2,0)/(2,1)/(2,2) 7.17/2.07/1.08 (Outer=1/1nner=0)
14 kHz (6,0)/(6,1)/(6,2) 2.64/1.68/1.07 (Outer=1/1nner=0)
¢) Block 3
FREQUENCY MODES CUT-OFF RATIO AMPLITUDE RATIO
7 kHz “4,0) 1.95 (Outer=1/Inner=1)
8 kHz (-6,0) 1.51 (Outer=1/Inner=1)
9 kHz (-8,0) 1.30 (Outer=1/Inner=1)
11 kHz (8,0)7(8,1) 1.59/1.12 (Outer=0/1nner=1)
12 kHz (8,0)7(8,1) 1.73/1.22 (Outer=0/1nner=1)
13 kHz 2,0)/(2,1)/(2,2) 7.17/2.07/1.08 (Outer=0/1nner=1)
14 kHz (6,0)7(6,1)/(6,2) 2.64/1.68/1.07 (Outer=0/Inner=1)

NASA/TM—2012-217685
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Figure 12.—Traverses for Code Validation Mode Configurations.
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(b)

Figure 13.—(a) Isolated UCFANS Exhaust Configuration Installed in ATL. (b) UCFANS Exhaust
Configuration Adjacent to Shield with Trailing Edge Installed in ATL.
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4.2 Reduced Data

A significant amount of data was acquired for noise shielding prediction code validation. Reported
herein will be a selection of the reduced data, encompassing select changes in the parametric study. The
data include the in-duct relative modal decomposition and sound pressure level (SPL) contour plots of the
traverse planes. The SPL contour planes were also integrated to obtain noise power level (PWL) —
(actually partial power to be used for comparison purposes). These are done for both the isolated nacelle
and the nacelle with wing (shield) cases. In addition, deltas between the isolated nacelle/nacelle + wall
configurations are presented to obtain shielding values. The convention will be to denote a reduction in
PWL due to shielding as a negative number (cooler colors on the contour plots). A qualitative analysis is
provided herein, as the objective is to assess the character of the system.

4.2.1 In-Duct Modal Signatures

Figure 14 and Figure 15show the in-duct modal decomposition for the exhaust nacelle (Figure 14)
and for the inlet nacelle (Figure 15). Subplots (a) to (c) show cases where the frequency was held constant
at 7 kHz and the single cut-on circumferential mode varied. Subplots (d) to (¢) show the cases with
frequency held constant at 12 kHz and the circumferential mode m = 8 with two radials cut-on are being
generated. The variation is in the driver row actuation (both, inner, or outer)—in order to cause a
differentiation in the radial mode mix. The ratio between the outer/inner driver row signal is varied to
qualitatively illustrate radial mode effects. While the mode generation system could infinitely vary the
relative magnitude or phase between the two rows, this simple on/off was chosen for evaluation purposes.
In theory, a desired radial structure could be selected and generated if a significant number of
magnitude/phase variations were generated and measured, then a steering vector matrix determined.

The single mode cases show the dominant mode substantially above the background. The target
mode (4,0) was strongly excited with very little spillover. Both the exhaust (Figure 14(a) to (¢)) and
inlet (Figure 15(a) to (c)) show this clearly. At the higher frequency, 12 kHz, with two-radials
propagating (8,0)/(8,1) the results are more mixed. For the exhaust configuration, there is clear aliasing to
m =—10,which is expected due to the driver count. (The aliased mode is the target mode minus the
number of drivers, e.g., 8 — 18 =—10.) The outer drivers (Figure 14(e)) generate a reasonable target mode
with moderate spillover, while the inner driver (Figure 14(f)) target mode generation is weak and more
spillover. The inlet configuration has generally cleaner mode decomposition. The outer driver (Figure
15(e)) and inner driver (Figure 15(f)) couple nicely to the zeroth and first radials, respectively. The
combination of the two rows creates a cancellation that reduces the overall target mode strength, with
modest spillover.

The two cases presented were generally representative the range of clarity of the modal
decomposition. The majority tended to be closer to the stronger target mode with modest spillover.
Imperfections in the compensation curves may account for spillover, and could be corrected in an iterative
process.

4.2.2 Nacelle Radiation to Far-Field Array Contours

Far-field noise data were acquired to document the possible shielding effect of the HWB and provide
data for the development of noise propagation codes. Time series data were recorded at a 200 kHz sample
rate. A Kaiser window function (2'* points) was then applied and a Fourier transform used to convert the
data to “as measured” spectra. Each spectrum was then corrected on a frequency-by-frequency basis for
the individual microphone response and the effect of the grid cap (using calibration curves supplied by the
manufacturer). Finally, the data were converted to a lossless condition by correcting for the atmospheric
attenuation of propagating sound. Note that the data presented are at the measurement location and
include the spherical spreading of sound. At this point, the tones of interest may be extracted from the
overall spectrum.
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Figure 16.—Example of tone penetration at lowest level.

Of particular interest in a shielding study is the background noise level (acoustic or electronic) and
the tone penetration to insure that the correct value for shielding is being determined. Figure 16 presents a
spectrum from data acquired from the shielded side of the model and represents one of the lowest noise
levels measured. It is seen in this figure that the tone penetration is a minimum of ~10 dB above the
background level. It is therefore believed, that all of the measurements made are that of valid tone levels,
and that any computed shielding value is not limited by the background noise.

A simple check on repeatability was achieved by repeating the main overhead horizontal sweep.
Figure 17 compares the SPL contours taken at the beginning of the day and at the end of the day. The
qualitative comparison of the contours is excellent. The computed PWL differences range from —0.3 to
—0.8 dB, depending on the tone frequency, averaging —0.5 dB. This systematic shift may be due to output
drift as a result of temperature or operating time.

The SPL contours for the exhaust nacelle configuration, 7 kHz m = (4,0) are presented in Figure 18
and Figure 19. The results for the two horizontal sweeps above the nacelle alone case are shown on the
left side of Figure 18, while the nacelle plus wall case are shown on the right side of the figure. The
nacelle alone cases show clear and strong modal structure, spreading out as the radiated distance from the
nacelle increases from +44.75 in. (c) to +60.45 in. (a) above the nacelle. The PWL is essentially
conserved, with a small amount of leakage outside the measurement plane at the higher distance sweep.
The nacelle with wall configuration, shows the reflection to the unshielded side of the nacelle. PWL is
essentially conserved as any reduction in sound energy on the shielded side is reflected and mostly
captured on the un-shielded side. Figure 19 is the data acquired along the vertical planes (curtains) for the
same nacelle configuration. The results obtained along the vertical curtain at —72.00 in. on the unshielded
side of the nacelle (i.e., above the aircraft) are shown in Figure 19(a) and (b). The edge of the mode lobe
is seen and the wing reflection increases the PWL on this side. The results obtained along the two vertical
curtains at +36.00 in., and +72.00 in. on the shielded side of the nacelle (i.e., below the aircraft) are
shown in Figure 19(c) to (f). The symmetry in the radiation from the isolated nacelle is seen by
comparing Figure 19(a) and (e). The effect of shielding is noted with a reduction in PWL of 14.1 dB at
36 in. from the shield and 5.6 dB at 72 in., with the higher value achieved closer to the “wing” as would
be expected.
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Exhaust Nacelle Horizontal Plane Views (7kHz mode (4,0)).

Figure 18.
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SPL contours for the exhaust nacelle in the isolated configuration are presented in Figure 20. The
frequency is held constant at 7kHz and the circumferential mode (single radial only) is varied. The results
obtained in the horizontal plane at 44.75 in. above the model are presented on the left hand side, the
vertical curtain at 36.00 in. from the model are presented in the right hand side. Integrated PWLs are
indicated next to each contour. As the plots are reviewed from the top of the page to the bottom, the
circumferential mode number increases, or the cut-off ratio decreases. For the well cut-on mode (4,0) and
€ = 1.95, the results shown in Figure 20(a) and (b) the very distinct lobed pattern of a classic mode. It is
seen in Figure 20(c) and (d) that as the cut-on ratio decreases the mode becomes more diffuse, until at just
above cut-on (€ = 1.01 — Figure 20(e) and (f)) the mode is seen to break down.

The results obtained for the higher frequency case (12 kHz) (also for the isolated exhaust nacelle) are
presented in Figure 21. At this frequency two-radials are cut-on; (8,0) and (8,1). The ratio between the
outer/inner driver row signal is varied to qualitatively illustrate radial mode effects in the far-field. The
azimuthal variation at this frequency is evident due to the spillover noted, especially in the horizontal
sweeps. There is a marked far-field effect due to radial variation. With some imagination, one can see that
figures (a) and (b) are super-positions of (c) and (e) and (d) and (f), as one might expect as the sources
themselves are super-positions. That is the configuration with both rows driven should be a combination
of the outer and inner rows individually driven.

Figure 22 (=7 kHz, m-mode varies) and Figure 23 (12 kHz, m = 8; n varies) repeat the modal
variations with the wall installed next to the exhaust nacelle. The PWL increases in each case on the
shielded side. Significant shielding is qualitatively noted (consistent with the other plots, the shielded side
is on the right hand side of plots (a), (c), and (¢)). PWLs are tabulated for each of the cases.

The A-SPL is computed by straight-forward subtraction at each measurement point to obtain the
quantitative shielding characteristics. A positive level (“warm” colors) indicate an increase in SPL or
PWL, while negative levels (“cool” colors) indicate a decrease in SPL or PWL, or “goodness”. The A-
SPL results are shown in Figure 24 for the 7 kHz circumferential mode variation, and in Figure 25 for the
12 kHz radial mode variation. The computed A-PWL is presented on each plot for the corresponding
sweep location. For the vertical curtain sweep, the A-PWL at the closer location is also indicated on the
plot, for comparison.

The results obtained for the isolated inlet nacelle configuration are shown in Figure 26 and Figure 27.
The corresponding data acquired with the leading edge ‘wing’ installed are shown in Figure 28 and
Figure 29. The equivalent A-SPL plots for the inlet nacelle are shown in Figure 30 and Figure 31.

Trends are very similar but subtle differences can be seen when making comparisons to the exhaust
nacelle results.

Figure 32 presents a limited sample of the broadband spectra. The spectra of the centerline
microphone is plotted at selected 6-in. intervals for the horizontal sweep above the model for the isolated
exhaust nacelle (Figure 32(a)) and with the wall installed (Figure 32(b)). For the isolated nacelle, one
expects that about 4.3 dB lower SPL is due to spherical spreading alone and that the rest of the difference
is due to the “lobed” nature of broadband directivity in the far-field as a function of radiated angle. A
quick glance shows that attenuation in the broadband SPL as the measurements are acquired deeper
into the shielded zone, is on the order of 20 to 25 dB attenuation at the 36.00 in. position. Figure 32(c)
and (d) show the same isolated nacelle/nacelle plus wall comparison but for the vertical curtain sweep.
Figure 32(e) shows the spectra from the traverse point that is at the same geometric position of the two
sweeps. The broadband “repeatability” is excellent.
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Figure 20.—Exhaust Nacelle Alone Contour Plots (Circumferential Mode Variation).
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Figure 21.—Exhaust Nacelle Alone Contour Plots (Radial Mode Variation).
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Figure 22.—Exhaust Nacelle with Wall Installed Contour Plots (Circumferential Mode Variation).
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(a) Horizontal plane at 44.75 in. above
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(a) Horizontal plane at 44.75 in. above
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(a) Horizontal plane at 44.75 in. above
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(a) Horizontal plane at 44.75 in. above (b) Vertical plane at 72.00 in.
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(a) Horizontal plane at 44.75 in. above

=t}
24
72
50
48
368
L
1z

a

Y (in)

-1z
—z4
-36
—43
-80
-7z

-84
_96:|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I|||I
-95-84-72-60-48-36-24-12 0 12 24 346 48 60 72 34 98

X {In)

(b) Vertical plane at 72.00 in.

PWL=46.2dB

12000 Hz
=01]
55
50
45

¥ (In)

12 kHz - mode (8,0)/(8,1)

both driver sets

-96-84-72-60-48-36-24-12 0 12 24 36 48 60 F2 24 06

(c) Horizontal plane at 44.75 in. above

ss PWL =646 dB
24
7z 12000 Hr
E &0
50E 2
42 - 50
E 45
36 F 40
24 F 35
E 30
E b - 25
= E
= o0 ES
"-12:—
-z4 |
-6 |
—4g |
-60 F
-7z |
—g4 |
Ceg Bl b b bbb bbb b b b
SO6-84-7Z-60-48-36-34-12 0 1% 2d 36 48 60 7I 84 05
X (In)

(d) Vertical plane at 72.00 in.

¥ {In)

12 kHz - mode (8,0)/(8,1)

outer driver set

PWL=47.0dB

12000 Hr
60
65
a0
45
40
35
20
25
20

-96-24-72-60-42-36-24-12 0 12 24 26 42 60 72 24 06

(e) Horizontal plane at 44.75 in. above

=t}
24
72
50

¥ (in)

RN R R RN RN RN RN RN RN NI RRRI RN AN RRNRRRY Rans]

'l FETTR ETERE FRTRU RTRE1 FRTRARTRN1 NNTI ATNTE FRRT ARTTI INATINRT!
6-84-F2-60-48-35-24-12 0 12 24 34 48
X {In)

T |
G0 72 24 06

['=}

(f) Vertical plane at 72.00 in.

&0
48
36
T 24
12

0

-1z

-24

PWL=475dB

12000 He
6o
55
50
45
40
35

-06-54-72-6G0-48-36-24-12 0 12 Z4 346 48 60 72 34 95
¥ (In)

12 kHz - mode (8,0)/(8,1)

innmer driver set
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(a) Horizontal plane at 44.75 in. above (b) Vertical plane at 72.00 in.
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(a) Horizontal plane at 44.75 in. above
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(a) Horizontal plane at 44.75 in. above
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(a) Horizontal plane at 44.75 in. above
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Figure 32.—Example of Broadband Signature—Exhaust Nacelle.
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5.0 Conclusion

The Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) test fixture is a configurable
fan-mode simulator for scale model testing of acoustic shielding. A sample subset of data was presented
for illustrative purposes representing the range of cases tested. In-duct modal analysis and external
radiation patterns confirm that consistent targeted combinations of frequencies and modal structure can be
achieved. Qualitatively, the far-field modal and shielding characteristics are as would be intuitively
expected and thus suitable for code validation and can be used for first order approximation shielding
benefits of fan tone noise for system study purposes.

The frequencies, and hence more complex modal structure, based on the operating points for the
Advanced Ducted Propulsor class engines selected for the Hybrid Wing Body aircraft, will be reported in
a flow-on paper.
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