

. 1

An Application-Based Performance Evaluation of
NASA’s Nebula Cloud Computing Platform

Subhash Saini, Steve Heistand, Haoqiang Jin, Johnny Chang, Robert Hood, Piyush Mehrotra, and Rupak Biswas
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, California 94035-1000, USA

{subhash.saini, steve.heistand, haoqiang.jin, johnny.chang, robert.hood, piyush.mehrotra, rupak.biswas}@nasa.gov

Abstract—The high performance computing (HPC)
community has shown tremendous interest in exploring cloud
computing as it promises high potential. In this paper, we
examine the feasibility, performance, and scalability of
production quality scientific and engineering applications of
interest to NASA on NASA’s cloud computing platform, called
Nebula, hosted at Ames Research Center. This work represents
the comprehensive evaluation of Nebula using NUTTCP,
HPCC, NPB, I/O, and MPI function benchmarks as well as
four applications representative of the NASA HPC workload.
Specifically, we compare Nebula performance on some of these
benchmarks and applications to that of NASA’s Pleiades
supercomputer, a traditional HPC system. We also investigate
the impact of virtIO and jumbo frames on interconnect
performance. Overall results indicate that on Nebula (i) virtIO
and jumbo frames improve network bandwidth by a factor of
5x, (ii) there is a significant virtualization layer overhead of
about 10% to 25%, (iii) write performance is lower by a factor
of 25x, (iv) latency for short MPI messages is very high, and (v)
overall performance is 15% to 48% lower than that on
Pleiades for NASA HPC applications. We also comment on the
usability of the cloud platform.

Keywords: Cloud computing, performance evaluation,
benchmarking, computational fluid dynamics, climate modeling.

I. INTRODUCTION

Cloud computing is currently a hot topic in high-
performance computing (HPC) [1-7]. It gives the illusion of
virtually infinite computing resources on demand (elasticity),
and has several novel features such as real-time resource
scalability, low cost, free maintenance, elimination of any
up-front commitment by users, customized and controlled
environments, and a pay-per-use model on shared multi-
tenant resources. The cloud computing paradigm shifts the
acquisition and maintenance of hardware and sometimes
software systems by individuals and organizations to
services that are remotely accessible via the Internet and run
by private and public entities.

In the past four years, several investigators have
examined the feasibility of using public clouds, mostly the
Amazon Cloud for high-performance scientific computing
[2-7]. He et al. performed a case study with a NASA climate
prediction application using three public clouds but did not
provide a detailed analysis of the performance difference or
scalability issues [8]. Jackson et al. evaluated Amazon EC2
using seven DOE applications [6]. Ramakrishnan et al.
evaluated performance of Amazon EC2 HPC, a new HPC
version of Amazon EC2 [9-10]. In addition to the

performance evaluation of public clouds, there have also
been studies conducted on private clouds; the DOE cloud
Magellan being the prime example [11].

In 2009, NASA began work on its own cloud computing
pilot project, called Nebula [12]. It utilized cutting-edge
technologies and infrastructure to provide a platform for the
rapid development of policy-compliant, secure Web
applications for education, public outreach, collaboration,
and mission support. An additional focus was to develop an
open source, seamless, self-service platform that provides
scalable high-capacity computing, storage, and network
connectivity to bridge the gap between desktops and
supercomputers for NASA scientist and engineers.

The goal of this paper is to evaluate the effectiveness of
Nebula for NASA-relevant HPC applications. To provide a
baseline, we compare its performance to that of Pleiades,
NASA’s primary supercomputing system. It is important to
note that the Nebula platform was initially not set up to
handle the high compute and communication requirements of
HPC applications, and the Nebula development team made
several modifications, as detailed in the later sections, during
the course of this effort in order to optimize the environment
for such usage. The overall aim of this effort was to
understand the potential role of cloud computing for
NASA’s scientific and engineering applications.

In this paper, we have compared the performance of
Nebula with Pleiades using NUTTCP, HPCC, I/O, NPB,
MPI function benchmarks, and four production NASA
applications. Our main contributions are as follows:
• Quantified the virtualization overhead in Nebula using

DGEMM and NPB;
• Used low-level MPI function benchmarks to measure

performance as a function of message size and core
count on Nebula and Pleiades to assess the impact of
virtualization on the performance of the MPI library;

• Compared the performance of I/O on Nebula with
Pleiades;

• Assessed the impact of virtual I/O (virtIO) and jumbo
frames on the performance of the network;

• Conducted detailed performance and scalability
analysis using benchmarks and applications to identify
the primary limiting factors of Nebula.

The remainder of the paper is organized as follows.
Section II provides details of the Nebula and Pleiades
systems. In Section III we describe the user environment on
the Nebula system. In Section IV we briefly describe the

. 2

benchmarks and applications used in the current study. In
Section V we present our results comparing the performance
of Nebula to Pleiades. Section VI presents some usability
issues. In Section VII we present our conclusions.

II. COMPUTING PLATFORMS

In this section we give a brief description of the Nebula
and Pleiades systems used in our study. We also briefly
describe the performance enhancement techniques like
jumbo frames, virtIO, and TCP/IP tuning, done on Nebula
during the course of this study.
A. Nebula (Cloud Computer)

Nebula has a virtualized cloud-computing environment
that provides a mechanism for launching and managing
virtual machine instances [12]. Nebula partly consists of 24
Cirrascale VB1315 server nodes, each with two Intel six-
core Westmere (Xeon X5660) processors for a total of 288
cores [13]. Each node has 96 GB of main memory and 2 TB
direct attached SATA II hard disk drives for external storage.
A 10GigE interconnect based on Cisco Nexus 7000 switch
connects the nodes [14]. Even though the compute nodes are
virtualized, we used them in a dedicated mode to avoid
multi-tenancy so that only one job is assigned on each node.
The virtualization layer is provided by hypervisor KVM
(Kernel Based Virtual Machine) [15].

Since installation of jumbo frames and virtIO, and tuning
of TCP/IP significantly improved the performance of the
Nebula’s network during the course of this study, we briefly
describe them here.
Jumbo Frames: A standard Ethernet frame is 64 to 1518
bytes in size with a header length of 18 bytes and payload of
46 to 1500 bytes. In this study, we installed and used a
jumbo frame of 9000 bytes, which is large enough to enclose
an Network File System (NFS) data block of 8192 bytes. A
jumbo frame has higher efficiency in data transmission since
each frame carries more user data while protocol overhead
and underlying per-packet delay remain fixed. Such a jumbo
frame replaces six frames of 1500 bytes each, thereby
producing a net reduction of five frames. As a result only one
Transmission Control Protocol/Internet Protocol (TCP/IP)
header and Ethernet header is required instead of six, leading
to fewer bytes transmitted over the network [16].
virtIO: One of the overheads incurred by the hypervisor is
the virtualization of devices. Instead of having several
different device emulation mechanisms for network, block,
and other drivers, virtIO provides a common front end to
standardize the interface and thus increases the reuse of code
across the platforms [17].
TCP/IP: Performance optimization of TCP/IP on Nebula
involved optimizing TCP memory buffer space and socket
buffer sizes at both ends of a TCP connection.

B. Pleiades
For comparison purposes we also used NASA’s Pleiades

supercomputer, an SGI Altix ICE system located at NASA
Ames Research Center. As of February 2012, Pleiades
comprises 11,776 nodes interconnected with an InfiniBand

(IB) network in a hypercube topology [18]. The nodes are
based on three different Xeon processors from Intel:
Harpertown, Nehalem-EP, and Westmere-EP. In this study,
we used only the Westmere-EP based nodes. In Table 1, we
compare the characteristics of the two systems, Nebula and
Pleiades, used in the present study. There are major
differences between the two systems. First is the networks
interconnect: 10 GigE Switch vs. 4x QDR IB. Peak
bandwidth of IB is 3.2 times higher than 10GigE (32 Gb/s
vs. 10 Gb/s). Also, IB has relatively low network latency
compared to 10 GigE. In addition, memory per node of
Nebula is 4 times higher than Pleiades. The two systems also
have a fairly different I/O infrastructure: Nebula uses direct
attached SATA II hard disk drives for storage accessible
from all nodes via NFS while Pleiades uses both NFS and a
Lustre parallel file system. For this study we used NFS on
both the systems.

TABLE I. CHARACTERISTICS OF NEBULA AND PLEIADES.

Characteristic Nebula Pleiades
Environment type Cloud HPC system

Processor type Intel Westmere
(Xeon X5660)

Intel Westmere
(Xeon X5670)

Processor speed (GHz) 2.80 2.93
Cores per socket 6 6
Number of sockets 2 2
Cores per node 12 12
Perf. per core (Gflops) 11.2 11.7
Perf./node (Gflops) 134.4 140.6
Main memory (GB) 96 24
Hyper-Threading (HT) Disabled Enabled
Turbo Boost Enabled Enabled

Network interconnect Cisco Nexus 7000
10 GigE switch 4x QDR IB

Peak network perf. Gb/s 10 32
Network topology Cisco proprietary Hypercube
Operating system CentOS v6 SLES11SP1
Compiler Intel 11.1 Intel 11.1

MPI library OpenMPI 1.4.3 MPT 1.25,
OpenMPI 1.4.3

Math library Intel MKL 10.1 Intel MKL 10.1
Type of file system NFS NFS and Lustre
Parallel file system no yes
Virtualization yes no

Hypervisor Kernel-based Virtual
Machine (KVM) n/a

Jumbo frames yes n/a
VirtIO yes n/a

III. SETUP OF USER ENVIRONMENT ON NEBULA

The Nebula Dashboard is a web-based management
system for creating and running “instances” on Nebula. At
the outset of our testing, there were only the five types of
instances shown in Table II.

Initial testing with the largest instance, m1.xlarge,
uncovered several issues:
• It was difficult to aggregate enough of these instances

to run a 240-process job.
• The nodes could be over-subscribed by having as

many as five instances running on the same node. Such
multi-tenancy severely hampered the performance of

. 3

applications as processes had to compete with others
running on the same nodes.

• By default, hyper-threading was turned on, so two
processes in an instance could be running on the same
core.
TABLE II. TYPE OF INSTANCES ON NEBULA DASHBOARD

Name # cpus Memory
(GB)

Local disk space
(GB)

m1.tiny 1 0.512 0
m1.small 1 2 20
m1.medium 2 4 40
m1.large 4 8 80
m1.xlarge 8 16 160

First, Nebula was rebooted with hyper-threading turned

off. Then a new instance type, m1.full0, was created to
acquire all 12 cores of a Westmere node. The new instance
also provided single-tenancy, that is, the instance
“occupied” the whole node and thus was not shared with
any other instance. This was a necessary requirement to get
any reasonable performance with HPC applications. We
also installed Intel compiler 11.1 and OpenMPI 1.4.3.

IV. BENCHMARKS AND APPLICATIONS

In this section we present a brief description of the
benchmarks and applications used in this study.

A. Network Benchmark (NUTTCP)
The network testing tool, NUTTCP, measures network

throughput between two peers [19]. It measures the raw
Transmission Control Protocol/User Datagram Protocol
(TCP/UDP) network layer throughput by transferring
memory buffers between the hosts. In addition, it produces
information related to the data transfer such as transmitter
and receiver CPU utilization along with user, system, and
wall-clock times.

B. HPC Challenge Benchmarks (HPCC)
The HPCC benchmarks are intended to test a variety of

attributes that can provide insight into the performance of
high-end computing systems [20]. These benchmarks
examine not only processor characteristics but also the
memory subsystem and system interconnects.

C. MPI Function Benchmarks (MFB)
The performance of real-world applications that use MPI

as the programming model depends significantly on the MPI
library and the performance of various point-to-point and
collective message exchange operations. Some of the MPI
functions used in the NAS Parallel Benchmarks and the four
applications are MPI_Bcast, MPI_Allreduce, MPI_Alltoall,
and MPI_Sendrecv.

D. Sequential I/O Benchmark
Sequential Read Write (SRW) is a single process I/O

benchmark that writes and reads an 8 GB file using various
block sizes ranging from 16 KB to 16384 KB.

E. NAS Parallel Benchmarks (NPB)
The NPB suite contains eight benchmarks comprising

five kernels (CG, FT, EP, MG, and IS) and three compact
applications (BT, LU, and SP) [21]. We used NPB MPI
version 3.3, Class C in our study. BT, LU, and SP are typical
of full production-quality science and engineering
applications.

F. Science and Engineering Applications
For this study, we used four production quality full

applications representative of NASA’s workload.

1) OVERFLOW-2 is a general-purpose Navier-Stokes
solver for CFD problems [22]. The code uses finite
differences in space with implicit time stepping. It uses
overset-structured grids to accommodate arbitrarily complex
moving geometries. The dataset used is a wing-body-
nacelle-pylon geometry (DLRF6) with 23 zones and 36
million grid points. The input dataset is 1.6 GB in size, and
the solution file is 2 GB.

2) CART3D is a high fidelity, inviscid CFD application
that solves the Euler equations of fluid dynamics [23]. It
includes a solver called Flowcart, which uses a second-
order, cell-centered, finite volume upwind spatial
discretization scheme, in conjunction with a multi-grid
accelerated Runge-Kutta method for steady-state cases. In
this study, we used the geometry of the Space Shuttle
Launch Vehicle (SSLV) for the simulations. The SSLV uses
24 million cells for computation, and the input dataset is 1.8
GB. The application requires 16 GB of memory to run.

3) USM3D is a 3-D unstructured tetrahedral, cell-
centered, finite volume Euler and Navier-Stokes flow solver
[24]. Spatial discretization is accomplished using an
analytical reconstruction process for computing solution
gradients within tetrahedral cells. The solution is advanced
in time to a steady-state condition by an implicit Euler time-
stepping scheme. The test case used 10 million tetrahedral
meshes, requiring about 16 GB of memory and 10 GB of
disk space.

4) MITgcm (MIT General Circulation Model) is a global
ocean simulation model for solving the equations of fluid
motion using the hydrostatic approximation [25]. The test
case uses 50 million grid points and requires 32 GB of
system memory and 20 GB of disk to run. It writes 8 GB of
data using Fortran I/O. The test case is a ! degree global
ocean simulation with a simulated elapsed time of two days.

V. RESULTS

In this section we present our results for low-level
benchmarks (HPCC, MPI functions) compact applications
(NPB), and full applications (Overflow, Cart3D, USM3D,
and MITgcm).

A. Jumbo Frames and Virtual I/O (VirtIO)
We measured communication bandwidth between two

nodes using the NUTTCP benchmark. Table III shows the

. 4

results of transfer rate measurements (in Mb/s) for a variety
of Nebula configurations (jumbo frames and virtIO). The
results are presented in chronological order of the testing
and provide the improvement factor over the initial state of
the system. The initial transfer rate on Nebula was only 195
Mb/s without virtIO and jumbo frames. By installing virtIO,
the rate increased to 519 Mb/s, improving by a factor of 2.7.
By enabling jumbo frames, the rate increased to 944 Mb/s.
Finally, the Nebula team optimized various parameters of
TCP/IP and the rate further increased to 5834 Mb/s, which
is still only 58% of the peak of the 10 Gb/s Ethernet
network. We also ran the same test using a non-virtualized
environment on Nebula, i.e., with the OS directly installed
on the bare metal without a virtualization layer. The
measured transfer rate for the non-virtualized system was
9600 Mb/s.

TABLE III. RESUTS OF TRANSFER RATES (Mb/s) FOR NEBULA
Test

Virtual VirtIO Jumbo
Frames

TCP/IP
Tuning

Transfer
Rate (Mb/s)

Impr.
factor

1 yes no no no 195 1
2 yes yes no no 519 2.7
3 yes yes yes no 944 4.8
4 yes yes yes yes 5834 29.9

In summary, there is a 39% overhead for inter-node
(two-node configuration) communication in Nebula due to
virtualization.

B. HPC Challenge Benchmarks (HPCC)
The results of running HPCC Version 1.4.1 on 240 cores

of the Pleiades and Nebula are shown in Table IV. Two
benchmarks (FFT and GUPS) were not run on Nebula due
to very high network latency for small messages.

1) Virtualization Overhead
Two benchmarks, DGEMM and STREAM, run on a

single core and allow us to assess the impact of virtualization
on compute and memory performance, as they do not depend
on the network. On Nebula, the performance degradation of
DGEMM and STREAM is 33% and 9% respectively
compared to Pleiades. The reasons for this lower
performance are due to (a) the overhead in translating the
memory address instructions, and (b) the executable binary
not being able to use the SSSE3 instructions of the chip with
the virtual layer in KVM hypervisor [19].

It is clear from these results that overhead due to
virtualization is about 33% and 9% for compute and memory
bound applications respectively even when there is no
communication and I/O.

2) Interconnect Impact
The network latency and bandwidth results from HPCC

clearly show the performance difference between
interconnects on the two systems. Random ordered ring
latency and bandwidth benchmarks show performance
degradation on Nebula due to contention in the network.
Network latency and bandwidth is 16.5 and 10.2 times worse
respectively than on Pleiades. The performance of HPL is
sensitive to characteristics of both the processor and the
network, and its performance gives us some insight into how
real applications may perform on Nebula. HPL is the high-
performance version of the widely published and
disseminated Linpack benchmark, used in the TOP500 list. It
solves a dense linear system of equations and its
performance depends upon DGEMM and the interconnect
bandwidth and latency. On a typical supercomputer, roughly
95% of the time is spent in DGEMM. However, for Nebula
the 10 GigE network clearly inhibits overall performance of
HPL by a factor of 1.7 with corresponding degradation in the
percentage of peak performance by almost half (92.7% to
53.7%).

Overall, the results of the HPCC runs indicate that the
lower performing network interconnect in Nebula has a
significant impact upon the performance of even very simple
applications as shown by the HPL results. In fact, it would
have an even more drastic effect on applications using
collective MPI functions such as MPI_Allreduce in MITgcm
and USM3D; and MPI_Alltoall in the NPB FT benchmark.

C. MPI Function Benchmarks
In this section, we describe the performance of MPI

functions used in the NPBs and the four applications.

1) Point-to-point Communication
Performance of the NPBs and the four applications

depends on the performance of MPI_Send and MPI_Recv;
therefore it is imperative to evaluate them on the two
systems.
MPI_Sendrecv: In Figure 1, we plot bandwidth for
MPI_Sendrecv for various message sizes ranging from one
byte to 512 KB on both systems. Also plotted in this figure
is performance relative to Pleiades. In MPI_Sendrecv, each
process receives from its left neighbor and sends to its right
neighbor at any instant. As can be seen from the plot, the
achieved bandwidth is always higher on Pleiades than on
Nebula for all message sizes. For message sizes up to 4 KB,
the performance on Pleiades is higher by a factor of 30 to 70
except at 4 bytes where it is a factor of 123. For message

TABLE IV. SUBSET OF HPCC SUITE PERFORMANCE ON 240 CORES FOR PLEIADES AND CLOUD COMPUTER NEBULA.

Computing
System

DGEMM
Gflops

EP DGEMM
Gflops

STREAM
GB/s

PTRANS
GB/s

HPL
Tflops

HPL
Efficiency

Random Order
Ring Latency µs

Random Order Ring
Bandwidth MB/s

Pleiades 12.10 11.59 2.33 28.7 2.58 91.7 19.1 159.11

Nebula 8.13 7.80 2.11 2.73 1.44 53.7 315.4 15.56

Perf. factor 1.49 1.49 1.10 10.51 1.79 1.7 16.5 10.20

Perf. decrease (%) 32.8 32.7 9.4 90.4 44.2 41.4 1551 90.2

. 5

sizes ranging from 8 KB to 512 KB, Pleiades’ bandwidth is
higher by a factor of 5 to 19. Higher bandwidth on Pleiades
is due to better network (4x QDR IB vs. 10GigE) and due to
network virtualization overhead in Nebula. We see a change
in slope on the two systems for message size 32 KB, which
is due to a change of algorithm.

Figure 1. Bandwidth of Sendrecv benchmark on Nebula and Pleiades.

Figure 2 shows the bandwidth of MPI_Sendrecv with a
64 KB message size for core counts ranging from 1 to 128.
Bandwidth on Pleiades is higher by a factor of 5 on 4 to 8
cores (within a node) and 12-15 on 16 to 128 cores. Within a
node, low performance on Nebula is due to OS virtualization
layer overhead and lower inter-node bandwidth is due to
different networks and network virtualization overhead.

Figure 2. Bandwidth of Sendrecv benchmark on Nebula and Pleiades.

MPI_Exchange: In Figure 3, we plot the performance for the
MPI_Exchange benchmark on both systems. Here, each
process exchanges messages with both its left and right
neighbors simultaneously. The measured bandwidth is
always higher on Pleiades than on Nebula for all the message
sizes. For small message sizes up to 4 KB, performance on
Pleiades is higher by a factor of 30 to 60. For message sizes
ranging from 8 KB to 16 KB, Pleiades’ bandwidth is higher
by a factor of 20 to 25. For message sizes ranging from 32
KB to 512 KB, Pleiades’ bandwidth is higher by a factor of 7
to 9. Higher bandwidth on Pleiades is again due to a better
network (4x QDR IB vs. 10GigE) and also due to network
virtualization overhead in Nebula.

Figure 3. Bandwidth of Exchange benchmark on Nebula and Pleiades.

Figure 4 shows the bandwidth of the MPI_Exchange
benchmark with a 64 KB message size for core counts
ranging from 1 to 128. Intra-node bandwidth is much higher
than inter-node bandwidth on both Nebula and Pleiades. In
addition, bandwidth on Pleiades is much higher than that on
Nebula due to slower network and significant overhead from
network virtualization of the latter. Since MPI_Sendrecv
involves a lesser volume of messages exchanged in
comparison with MPI_Exchange, it is natural to expect better
throughput from MPI_Sendrecv.

Figure 4. Bandwidth of Exchange banchmark on Nebula and Pleiades.

2) Collective Communications
The performance of the NPBs and the four applications

used in this study significantly depends on the performance
and scalability of collective MPI functions. We present the
performance of MPI collective functions for message sizes
ranging from 1 byte to 512 KB along with the scalability for
the 8-byte message size used in MPI_Allreduce in MITgcm,
the 64 KB message size in MPI_Allreduce of NPB FT, and
the 1 MB message used in MPI_Bcast of Overflow. An
average message size was measured by an SGI tool called
MPInside [26].
MPI_Allreduce: In Figure 5, we plot the average time for
MPI_Allreduce on both systems for MITgcm and USM3D.
The performance on Pleiades is always higher than that on
Nebula, however the performance gap decreases as the
message size increases. For message sizes: small (4 bytes to
2 KB); medium (4 KB to 64 KB), and large (128 KB to 512
KB), performance of Nebula is lower by a factor of 71 to

. 6

139, 29 to 46, and 5 to 15 respectively than on Pleiades.
Notice that latency (time for a 4-byte message) on Nebula is
higher by a factor of 70 than on Pleiades.

Figure 5. Performance of MPI_Allreduce on two systems for 128 cores.

Figure 6 shows the performance of MPI_Allreduce on
two systems for a message size of 8 bytes used in MITgcm.
Since the message size is very small, the measured time is
basically the network latency for the MPI_Allreduce
operation. Intra-node performance of Nebula is lower than
Pleiades by a factor of 12 to 21. However, inter-node
performance is lower by a factor of 40 to 130. Network
latency of both systems increases with increasing number of
cores, although it is smooth and gradual on Pleiades and
more abrupt on Nebula. This difference is due to high
network latency of the 10 GigE network and virtualization
layer on Nebula whereas Pleiades has low latency IB as its
network and no virtualization.

Figure 6. Performance of MPI_Allreduce for 8 byte message.

MPI_Bcast: Figure 7 shows the performance of MPI_Bcast
for various message sizes on the two systems. Performance
on Nebula is lower by a factor of 150 to 200 for small
message sizes of one byte to 8 KB; then this difference
decreases rapidly and is only a factor of 10 at 512 KB.

Figure 7. Performance of MPI_Bcast on Nebula and Pleiades.

Figure 8 shows the performance of MPI_Bcast for the
1 MB message size used in Overflow. Intra-node broadcast
time increases smoothly on both the systems, though it
increases more rapidly on Nebula. On Nebula, there is a
sharp increase in broadcast time from 8 cores (one node) to
16 cores (two nodes) and as a result its performance
decreases from a factor of 8 to 17. Beyond 16 cores, the
performance difference between the two systems also
decreases (from a factor of 17 at 16 cores to a factor 11 at
128 cores).

Figure 8. Performance of MPI_Bcast for a 1 MB message.

MPI_Alltoall: Figure 9 shows the performance of
MPI_Alltoall for various message sizes on the two systems
for 32 cores. We are presenting results only for 32 cores, as
this benchmark did not complete for all the message sizes for
64 and 128 cores on Nebula due to its poor network
performance. For small message sizes up to 128 bytes,
performance of Nebula is lower by a factor of 24 to 39.
Beyond 128 bytes, it is lower by factor of 9 to 15 except at
256 bytes and 4 KB where it is lower by factor of 96 and 24,
respectively.

. 7

Figure 9. Performance of MPI_Alltoall for 32 cores.

Figure 10 shows the performance of MPI_Alltoall for the
64 KB message size used in the FT benchmark of the NPB
suite. Intra-node Nebula performance is lower by a factor 4
to 6. For inter-nodes of 16 (2 nodes), 32 (3 nodes), and 64 (6
nodes) cores, performance degrades drastically and is lower
by a factor of 19, 10, and 14, respectively.

Figure 10. Performance of MPI_Alltoall for 64 KB message size.

In summary, we conclude that:
• The performance (network bandwidth and latency) of

Nebula with 10 GigE interconnects is much lower than the
4x QDR InfiniBand (IB) interconnects used in Pleiades.

• On Nebula, the latency for small messages is significantly
worse than 4x QDR IB used in Pleiades, which indicates
that applications with small messages will not achieve
good performance on Nebula.

D. Sequential Read/Write (SRW)
All the four applications used in the study perform

sequential I/O i.e. all the processes send data to rank 0,
which writes it to the file. The main drawback of serial I/O
is a lack of parallelism that limits scalability and
performance due to the single node bottleneck. The
maximum size of files read by MITgcm, Overflow, Cart3D,
and USM3D are 1, 2, 4, and 6 GB respectively. The
corresponding sizes of the written files are 9, 3, 1, and 1
GB, respectively. Measured read and write block sizes for
the four applications range from several KB to several MB.

To mimic the I/O pattern, total read/write size and block
size of the four applications we used Sequential Read/Write
(SRW) benchmark which measures I/O bandwidth for read

and write operation with various block sizes. Running SRW
benchmark can give an indication of how these four
applications will fare in a cloud environment. In view of the
aforesaid, we used a file size of 8 GB and block sizes
ranging from 16 KB to 16384 KB. The test first writes an 8
GB file and then reads it. We used NFS on both Pleiades
and Nebula. On Nebula, we experimented using different
nodes and found no performance difference due to physical
location as the I/O has to go through network switch and
this incurs overhead due to virtualization and low
performance interconnects. Recall that the peak network
bandwidth of Nebula (10 GigE) is 3.2 slower than on
Pleiades (4x QDR IB).

Figure 11 shows write bandwidth on the two systems
and the rate at which Nebula can perform writes to disk
relative to Pleiades. Write bandwidth is lower on Nebula by
factor of 24 to 28 in the entire range of block sizes tested.

Figure 11. Write bandwidth on Nebula and Pleiades

Figure 12 shows the rate at which Nebula can perform
reads from disk relative to Pleiades. Read bandwidth is
better on Nebula by a factor of 3 to 4. The reason for this is
that reading the data on Nebula is mostly from the cache
because the memory per node is four times bigger on
Nebula than on Pleiades (96 GB vs. 24 GB), which allowed
for a much larger memory cache on the former environment.

Figure 12. Read bandwidth for Nebula and Pleiades.

The reason for low write performance on Nebula is due
to overhead of virtualized I/O and location of a disk space.
Disk space for I/O on Nebula is NFS mounted to every
back-end node acquired in a particular instance. Thus,
getting good write performance requires binding the NFS

. 8

server instance to a node that physically has the disk space.
However this information is not available and there is no
mechanism to request specific nodes for running an
instance.

In summary, write bandwidth on Nebula is slower by a
factor of 24 to 28 due to virtualization overhead and read
bandwidth is better by a factor of 3 to 4. In addition, there
is no parallel file system on Nebula, although none of our
applications used in this study required it.

E. NAS Parallel Benchmarks (NPB)
In this section we present results of the NPBs for intra-

node and inter-node runs on the two systems. We used the
same versions of Intel compiler and MPI library OpenMPI
for sets of runs. Intra-node results provide the impact of
overhead due to the virtualization layer of KVM and inter-
node results give us the effect of slower virtual network of
10 GigE used in Nebula in addition to virtualization
overhead.

1) Intra-node Performance
Figure 13 shows the performance of NPBs on a single

node, split into total, compute and communication times on
four and eight cores for Nebula and Pleiades. BT and SP run
only on square grids so the 8 core numbers for them actually
used 9 cores. Total and compute time of the NPBs except for
CG is lower by a factor of 1.1 to 1.3 (10% to 25%). This is
consistent with the virtualization overhead of DGEMM
within a node (see section V-B1). However, communication
time is higher by a factor of 1.1 to 3.5 on Nebula.

Figure 13. Performance of NPBs on a node for Nebula and Pleiades

2) Inter-node Performance:
Figure 14 shows the total time (compute plus

communication) relative to Pleiades on Nebula for the
number of cores ranging from 4 to 128 cores. Up to 32 cores
performance on Nebula is lower by a factor of 1.1 to 2.2.
Beyond 32 cores counts performance is lower by a factor of
1.8 to 5.6.

Figure 15 shows the compute time relative to Pleiades on
Nebula for the number of cores ranging from 4 to 128.
Performance of the NPBs on Nebula is lower by a factor of
1.1 to 1.3 than on Pleiades except for CG where the
degradation is larger.

Figure 16 shows the communication time relative to
Pleiades on Nebula for the number of cores ranging from 4
to 128. The BT and SP benchmarks run only on square grids
thus the 8, 32, and 128 core runs for them refer to actual runs

on 9, 25, and 121 cores, respectively. Performance of the
NPBs on Nebula is lower by a factor of 1.1 to 1.4 or intra-
node and 3 to 18 for inter-node than on Pleiades.
Communication time on Nebula increases as the number of
cores increases due to high latency of the 10GbE network.

 In summary, there is a significant virtualization overhead
as indicated by the intra-node results. One can expect
performance of the tightly coupled applications to be at least
10% to 25% lower on Nebula than on Pleiades.
• Performance is correlated with the intensity of the

communication especially for higher core counts.
• Performance is much lower for benchmarks (CG and

LU) with small message sizes because of high latency
on Nebula as these two benchmarks use a large
number of small messages.

• Performance for higher core counts is much lower than
on lower counts due to poor Nebula’s network
performance especially latency.

Figure 14. Total time for NPBs on Nebula and Pleiades.

Figure 15. Compute time for NPBs on Nebula and Pleiades

Figure 16. Communication time for NPBs on Nebula and Pleiades.

. 9

F. Science and Engineering Applications

In this subsection we focus on the comparative
performance of four full applications, Overflow, Cart3D,
USM3D, and MITgcm, on the two systems. Time for all the
four applications is for the main loop i.e. compute and
communication time and does not include I/O time. Figure
17 summarizes the percentage performance degradation of
these applications. Intra-node performance in Cart3D is
lower on Nebula by 13.4%, which is basically a
virtualization overhead. For inter-node runs, the
performance is lower by 15% to 48%, which is mostly due to
high latency of the 10GigE. Performance degrades more
with an increasing number of cores due to high latency of
small messages and virtualization overhead of 10GigE
network of Nebula.

Figure 17. Relative performance degradation for applications.

Figures 18-21 provide the performance and scalability of
the four full-scale applications used in this study. Each figure
shows the scaling performance on the Nebula and Pleiades
systems along with the performance relative to Pleiades. The
Overflow performance on Nebula is lower by 18%, 29% and
36% on 32, 64, and 128 cores of Pleiades, respectively.
Overflow is a memory bound application with negligible
communication so performance degradation is basically due
to virtualization overhead. It is consistent with our findings
of virtualization overhead of 33% in DGEMM (See section
V-B1).

Figure 18. Time per step for Overflow on Nebula and Pleiades.

The Cart3D performance on Nebula is 1.2, 1.2, 1.4, and
1.8 times slower than the Pleiades performance on 8, 16, 32,
and 64 cores, respectively. The 128-core run on Nebula
could not be completed due to the OpenMPI module settings
on the Nebula system. The USM3D performance on Nebula
is 1.31, 1.39, and 1.59 slower than Pleiades on 32, 64, and
128 cores, respectively. The MITgcm performance on
Nebula is 1.4, 1.5, and 1.9 slower than Pleiades on 60, 120,

and 240 cores, respectively. Timing for MITgcm is for the
main loop, which excludes writing a 8GB check file on disk.
Performance degradation of USM3D and MITgcm with an
increasing number of cores is due to poor performance of
MPI_Allreduce on Nebula because of high latency of
10GigE.

Figure 19. Time for Cart3D on Nebula and Pleiades.

Figure 20. Time for USM3D on Nebula and Pleiades.

Figure 21. Time for MITgcm on Nebula and Pleiades.

VI. USABILITY ISSUES ON NEBULA

Nebula is distinctly different from that of Pleiades, a
traditional HPC system. Nebula is an infrastructure-as-a-
service (IaaS) environment, so users have the onus to set up
the entire software stack (operating system, compilers, math
libraries, MPI libraries) needed to execute their applications.

In order to alleviate this issue, we designated one person
as the “System Administrator” for Nebula to set up the initial
environment and launch the instances. This process is
complicated; however, once done, adding more nodes and
scaling the cluster size is straightforward. Unfortunately, the
nodes frequently failed to launch, so some manual
intervention was required to make sure the cluster came up
with the requested size.

After the initial setup, from a user's perspective the
environment was just an N-node cluster that they could use

. 10

to run applications. However, since there was no batch
queuing system installed, some offline coordination was
required to keep users from interfering with each other.
Nodes had occasional reliability issues as well as network
instability causing codes to crash.

VII. CONCLUSONS

In this paper, we conducted a comprehensive
performance evaluation and analysis of Nebula, NASA’s
cloud computing platform, using low-level benchmarks
(NUTTCP, I/O, HPCC, MPI functions), the NAS Parallel
Benchmarks, and four production quality NASA HPC
applications. Nebula is a virtualized environment for web-
based applications and mid-level scientific computing
between desktops and supercomputers. Our focus here was
HPC applications that are generally tightly coupled,
requiring a significant amount of inter-process
communication. In order to assess Nebula’s utility for such
applications, we compared its performance to that of a
traditional supercomputer, NASA’s Pleiades system. In the
course of the study, the Nebula development team made
several optimizations that enhanced the suitability for HPC
applications including providing a single-tenancy image, and
implementing jumbo frames and virtIO to improve network
communication performance. Our key findings are two fold:
• The virtualization layer utilized in cloud computing

platforms to support on-demand access and elasticity
of resources is actually detrimental to the performance
of HPC applications. This is evident from the lower
performance of even single-node runs on Nebula as
compared to those on Pleiades.

• The lower performance of 10 GigE networks typically
used in cloud computing systems as compared to low-
latency high-bandwidth interconnects (such as
InfiniBand) used in supercomputers has a significant
negative impact on HPC applications. This is
particularly true at higher core counts where
communication is a larger fraction of the total runtime.

Cloud computing environments have recently made
significant strides to support highly parallel applications, as
evidenced by the introduction and continuous improvement
of Amazon EC2’s HPC instances and the optimizations of
Nebula during the course of this study. However, until the
issues of virtualization overhead and lower communication
performance are resolved, cloud computing will not be
competitive with traditional supercomputers for HPC
applications.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.

Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia.
Above the Clouds: A Berkeley View of Cloud Computing. Technical
report, UC Berkeley, 2009.

[2] C. Evangelinos and C.N. Hill, Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2, in: Proc. 1st
Cloud Computing and Its Applications, 2008,
http://cca08.org/papers.php

[3] Z. Hill and M. Humphrey. A Quantitative Analysis of High
Performance Computing with Amazon’s EC2 Infrastructure: The
Death of the Local Cluster? in: Proc. 10th IEEE/ACM International
Conference on Grid Computing, 2009.

[4] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema. A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing. In Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, 2010.

[5] Edward Walker, Benchmarking Amazon EC2 for High Performance
Scientific Computing, USENIX, vol. 33(5), pp 18-23, Oct 2008,

[6] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J.
Shalf, H. J. Wasserman, and N. J. Wright. Performance Analysis of
High Performance Computing Applications on the Amazon Web
Services Cloud, in: Proc. 2nd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Nov-Dec,
2010, pages 159-168, Indianapolis, IN.

[7] J. Napper and P. Bientinesi. Can Cloud Computing Reach the
Top500? In: Proc. Combined Workshops on Un-Conventional high
performance computing workshop plus memory access workshop,
NewYork, NY, USA, 2009.

[8] Q. He, S. Zhou, B. Kobler, D. Duy, and T. McGlynn. Case Study for
Running HPC Applications in public Clouds. In Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, NewYork, NY, 2010; Also in 1st Workshop on Scientific
Cloud Computing, Chicago, IL, 2010.

[9] Amazon Inc. High Performance Computing (HPC) on AWS.
http://aws.amazon.com/hpc-applications/

[10] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.
Wright., Evaluating interconnect and virtualization performance for
high performance computing, SIGMETRICS Performance Evaluation
Review 40(2) (2012).

[11] L. Ramakrishnan, P. T. Zbiegiel, S. Campbell, R. Bradshaw, R. S.
Canon, S. Coghlan, I. Sakrejda, N. Desai, T. Declerck, A. Liu,
Magellan: Experiences from a Science Cloud, in: 2nd Workshop on
Scientific Cloud Computing, San Jose, CA, 2011.

[12] Nebula Cloud Computing Platform. http://nebula.nasa.gov/
[13] Cirrascale Blade Server Offerings:

http://www.cirrascale.com/serverblades.asp
[14] Cisco Nexus 7000 Series Switches:

http://www.cisco.com/en/US/products/ps9402/index.html
[15] KVM: Kernel Based Virtual Machine, http://www.linux-

kvm.org/page/Main_Page
[16] Selina Lo, Jumbo frames? Yes!,

http://www.networkworld.com/forum/0223jumboyes.html
[17] Rusty Russell, virtio: towards a de-facto standard for virtual I/O,

devices, ACM SIGOPS Operating Systems Review - Research and
developments in the Linux kernel archive, Volume 42, Issue 5, July
2008, ACM New York, NY.

[18] Pleiades. http://www.nas.nasa.gov/hecc/resources/pleiades.html
[19] Network Performance TooL: Nuttcp, http://www.nuttcp.net/
[20] HPC Challenge Benchmarks, http://icl.cs.utk.edu/hpcc/
[21] NAS Parallel Benchmarks (NPB).

http://www.nas.nasa.gov/publications/npb.html
[22] OVERFLOW, http://aaac.larc.nasa.gov/~buning/
[23] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. High Resolution

Aerospace Applications using the NASA Columbia Supercomputer,
in: Proc. ACM/IEEE SC05, Seattle, WA, 2005.

[24] USM3D: http://tetruss.larc.nasa.gov/usm3d/
[25] M.I.T General Circulation Model (MITgcm), http://mitgcm.org/
[26] S. Saini, P. Mehrotra, K. Taylor, S. Shende and R. Biswas,

Performance Analysis of Scientific and Engineering Applications
Using MPInside and TAU, pp. 265-272, in: Proc. 12th IEEE Intl.
Conf. on High Performance Computing and Communications,
Melbourne, Australia, 2010.

