Flight Programs and X-ray Optics Development at MSFC

M. Gubarev, B. Ramsey, S.L. O’Dell, R. Elsner, K. Kilaru, C. Atkins, D. Swartz, J. Gaskin and Martin Weisskopf
NASA Marshall Space Flight Ctr., Huntsville, AL 35812, USA

ABSTRACT

The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOKSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SXRGM). The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond level. The status of these x-ray optics technology developments is also presented.

Flight Programs

High Energy Replicated Optics (HERO)

HERO, for High Energy Replicated Optics, is a balloon program designed to demonstrate MSFC optics and perform science. Utilizes in-house-fabricated hard-x-ray mirrors plus supporting x-ray detectors, gondola, and pointing system.

Payload Description:

- FOKSI is a sounding rocket based payload led by the University of California, Berkeley and consisting of x-ray optics provided by MSFC and focal plane detectors provided by Japan.

Astronomical Roentgen Telescope ART

MSFC has designed and is fabricating four ART x-ray optics modules under an International Reimbursable Agreement between NASA and IKI. The modules have to be delivered to the IKI in June 2013.

Deliverables: 1 engineering unit (6 shells + mass simulators) and 4 flight units (28 shells/unit)

Test was performed at the MSFC’s Stray Flight facility.

Shell M02-S06 has been tested, the angular resolution is found to be 30 arc seconds HPD, which would correspond to the module performance of ~35 arc seconds.

The effective area of the shell exceeds requirements.