Engineering Technical Review Planning Briefing

The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering (SE) Engine and its implementation, 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle, 5) Technical Reviews, 6) NASA Human Factor Design Guidance, and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
Marshall Space Flight Center (MSFC)
Engineering Technical Review Planning Briefing
Presenter: Terrie Gardner/MSFC

October 22, 2012
• NASA Overview
• MSFC Overview
• Engineering Directorate, Spacecraft and Vehicle Systems Department, Systems Engineering and Integration Division Overview
• NASA Systems Engineering Engine
• NASA Project Life Cycle
• Technical Management Branch Overview
• Engineering Planning and Technical Review Team Overview
• Technical Reviews
• Human Factors
• Questions
• Closing
NASA Overview
Marshall has a key role in NASA’s mission.
MSFC Overview
Marshall continues its legacy of science and exploration.
Marshall Space Flight Center (MSFC)

• Marshall is one of NASA’s 10 field centers and works under the direction of headquarters in Washington, D.C.

• The map shows the location and specialty of each center -- each with its own unique role in meeting the agency’s goals.

• Marshall Space Flight Center is providing critical support in space transportation, space operations, and scientific research.

• One of Marshall’s unique roles in the agency is the management of the Michoud Assembly Facility in New Orleans, Louisiana.
 • It’s a major space vehicle manufacturing and assembly facility and among the world’s largest manufacturing sites.
 • Michoud manufactured Saturn components, space shuttle external tanks and is ready to play a role in NASA’s new launch vehicles.
From Exploration to Opportunity

- Marshall impacts the community.
- $2.88 billion (FY2009) impact to Alabama economy
- Nearly 6,000 employees (civil service and contractor, approximate number)
- 3rd largest employer in the Huntsville – Madison County area
- 4.5 million square feet of space occupied in Huntsville
- 2.2 million square feet of manufacturing space at Michoud Assembly Facility

Marshall impacts the community.
Marshall’s Role in Space Exploration

Marshall makes significant contributions to America’s space program.

Lifting from Earth

Living and Working in Space

Understanding Our World and Beyond

Marshall makes significant contributions to America’s space program.
Lifting from Earth – Exploration Program Destinations

Beyond LEO – NASA’s Space Launch System

Earth’s Moon

Near-Earth Asteroids

Mars and Its Moons

Low Earth Orbit (LEO) – Commercial Space Transportation

The need for flexible, evolvable and affordable systems.
Lifting from Earth – The Space Launch System

SLS – America’s Heavy Lift Rocket

• Safe, affordable and sustainable
• Carries the Orion Multi-Purpose Crew Vehicle (MPCV)
• Supports national missions beyond Earth orbit
• Does not preclude back-up for ISS transportation
• Initial lift capacity of 70 metric tons (mt) evolving to 130 mt
• Builds on Saturn, Shuttle and Ares

Solid Rocket Motor Test Friction Stir Welding Shell Buckling Test Upper Stage J-2X Engine J-2X Engine Tests Core Stage RS-25 Engines

Marshall’s capabilities and facilities are launching the future of space vehicle development.
Flexible, Modular Configuration for Exploration Missions
Engineering Directorate, Spacecraft and Vehicle Systems Department, Systems Engineering and Integration Division
Organization Overview
The Spacecraft and Vehicle Systems Department, Engineering Directorate, plans, performs and directs the technical Design, Analysis, Test, Evaluation, Verification, Integration, and Research & Development of the state of the art Spacecraft and Launch Vehicle Systems.
Systems Engineering & Integration (SE&I) Division

Technical Management Branch
- Technical work planning
- Schedules
- WBS/PBS development
- Design Reviews
- Design & Development Plans
- CoFR Planning
- Management of Design
- Knowledge management
- Risk management
- TPM collection, analysis & reporting

System Design & Definition Branch
- System synthesis
- System architecture concept Functional analysis
- Functional Decomposition
- Requirement definition
- Requirement flow down & traceability
- Requirement analysis
- Requirement compliance
- Interface definition
- Interface Requirements
- Interface control & management
design integration
"Design-to" environments definition & coordination
integrated environments
LRU determination

System Test & Verification Branch
- Verification & validation planning,
 requirements/success criteria
- Acceptance planning
- Certification planning
- Qualification planning
- Test integration
- Special test equipment
 requirements & design coordination
- Test data analysis
- Test planning & preparation
- Test reporting
- Vehicle checkout
- System development test planning (ground & flight)
- Flight evaluation

System Analysis Branch
- Integrated design analysis (multi-system, multi-discipline)
- Human Factors
- Electrical Power & Energy Management
- Mass Properties
- Physical integration analysis
- Probabilistic design analysis
- Sensitivity analysis
- Uncertainty analysis
Systems Engineering Definitions

- Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system.

- Systems engineering is the art and science of developing an operable system capable of meeting requirements within often opposed constraints.

- Systems engineering is a holistic, integrative discipline, wherein the contributions of structural engineers, electrical engineers, mechanism designers, power engineers, human factors engineers, and many more disciplines are evaluated and balanced, one against another, to produce a coherent whole that is not dominated by the perspective of a single discipline.

Systems Engineering Engine
Figure 3-1 – SE Engine

NASA Systems Engineering (SE) Engine

System Design Processes
- Requirements Definition Processes
 1. Stakeholder Expectations Definition
 2. Technical Requirements Definition
- Technical Solution Definition Processes
 3. Logical Decomposition
 4. Design Solution Definition

Technical Management Processes
- Technical Planning Process
- Technical Control Processes
 11. Requirements Management
 12. Interface Management
 13. Technical Risk Management
 14. Configuration Management
 15. Technical Data Management
- Technical Assessment Process
 16. Technical Assessment
- Technical Decision Analysis Process
 17. Decision Analysis

Product Realization Processes
- Product Transition Process
- Evaluation Processes
 7. Product Verification
 8. Product Validation
- Design Realization Processes
 5. Product Implementation
 6. Product Integration

Requirements Flow Down from Level above

Requirements Flow Down to Level below

Realized Products to Level above

Realized Products from Level below

System Design Processes applied to each WBS Model down and across system structure

Product Realization Processes applied to each product up and across system structure
SE Engine Description

• Contains core set of common technical processes and requirements to be used by NASA projects in engineering system products during the product life cycle.

• The 17 common technical processes are enumerated according to their description in the NASA Interim Directive 7123_69, NASA Systems Engineering Processes and Requirements.

• SE common technical processes model illustrates the use of:

 (1) The system design processes for —top down design of each product in the system structure
 (2) The product realization processes for —bottom up realization of each product in the system structure
 (3) The technical management processes for planning, assessing, and controlling the implementation of the system design and product realization processes.
 (4) Guide technical decision making (decision analysis)
The SE common technical processes model is referred to as an—SE engine:

• To stress that these common technical processes are used to drive the development of the system products

• To stress that these common technical processes are used to drive the development of associated work products required by management to satisfy the applicable product-line life-cycle phase exit criteria

• While meeting stakeholder expectations within cost, schedule, and risk constraints.
Application of SE Engine Processes within System Functions

Figure 3-2 – Application of SE Engine Processes within System Structure
The common technical processes are used to define the WBS models of the system structure in each applicable phase of the relevant product-line life cycle to generate work products and system products needed to satisfy the exit criteria of the applicable phase. System engineering continues well into the operations and maintenance phase of a project, i.e., after the system products are delivered.
NASA Project Life Cycle

NPR 7120.5E, NASA Space Flight Program and Project Management Requirements
• The Technical Management Branch provides systems design with the following products and services:

 • Multidiscipline leadership

 • Technical Guidance

 • Technical Planning
 • Production and maintenance of technical plans such as the SEMP and Development Plans for the program/projects
 • Management of communication across interfaces
 • Technical Plan Implementation Assessments

 • Milestone Technical Review Planning

 • Decision Process Support

 • Risk Management

 • Technical Performance Metrics
Engineering Planning and Review Team Services

• Expertise
 o Technical and Review Plan Development and Maintenance
 o Drafting, negotiating, and baselining of technical plans such as a program or project’s Systems Engineering Management Plan (SEMP)
 o Mission Concept Review (MCR) Plan
 o Other Review plans (i.e., SRR, SDR, PDR, CDR, DCR, etc.).

• Implementation of Plans
 o Review Plan direction, implementation, and coordination
 o Technical Plan Implementation Assessment

• Administrative
 o RID Tool Support
 o Review and RID Tool Training
 o RID Tool Account maintenance during program reviews
 o Track and monitor RID review process to assure closure of open RIDs
Technical Reviews
A technical review is an evaluation of the project, or element thereof, by a knowledgeable group for the purposes of:

a. Assessing the status of and progress toward accomplishing the planned activities.

b. Validating the technical tradeoffs explored and design solutions proposed.

c. Identifying technical weaknesses or marginal design and potential problems (risks) and recommending improvements and corrective actions.

d. Making judgments on the activities’ readiness for the follow-on events, including additional future evaluation milestones to improve the likelihood of a successful outcome.

e. Making assessments and recommendations to the project team, Center, and Agency management.

f. Providing a historical record that can be referenced of decisions that were made during these formal reviews.

g. Assessing the technical risk status and current risk profile.

Reference: NID 7123.69, NASA Systems Engineering Processes and Requirements
• The technical team shall execute the required technical review in accordance with the review entry and success criteria guidance in governing documentation.

• Reviews are considered complete when the following are accomplished:
 a. Agreement exists for the disposition of all Review Item Discrepancies (RIDs) and Request for Actions (RFA).
 b. The review board report and minutes are complete and distributed.
 c. Agreement exists on a plan to address the issues and concerns in the review board’s report.
 d. Agreement exists on a plan for addressing the actions identified out of the review.
 e. Liens against the review results are closed, or an adequate and timely plan exists for their closure.
 f. Differences of opinion between the project under review and the review board(s) have been resolved, or a timely plan exists to resolve the issues.
 g. A report is given by the review board chairperson to the appropriate management and governing program management committees (PMCs) charged with oversight of the project.
 h. Appropriate procedures and controls are instituted to ensure that all actions from reviews are followed and verified through implementation to closure.
Entrance and Success Criteria
Reference: NID 7123.69, NASA Systems Engineering Processes and Requirements

<table>
<thead>
<tr>
<th>Entrance Criteria</th>
<th>Preliminary Design Review</th>
<th>Success Criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Successful completion of the SDR or MDR and responses made to all SDR or MDR</td>
<td>1. The top-level requirements—including mission success criteria, TPMs, and any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFAs and RIDs, or a timely closure plan exists for those remaining open.</td>
<td>sponsor-imposed constraints—are agreed upon, finalized, stated clearly, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. A preliminary PDR agenda, success criteria, and change to the board have</td>
<td>consistent with the preliminary design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>been agreed to by the technical team, project manager, and review chair prior to</td>
<td>2. The flow down of verifiable requirements is complete and proper or, if not, an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the PDR.</td>
<td>adequate plan exists for timely resolution of open items. Requirements are traceable to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PDR technical products listed below for both hardware and software system</td>
<td>mission goals and objectives.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elements have been made available to the cognizant participants prior to the</td>
<td>3. The preliminary design is expected to meet the requirements at an acceptable level of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>review:</td>
<td>risk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Updated baselined documentation, as required.</td>
<td>4. Definition of the technical interfaces is consistent with the overall technical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Preliminary subsystem design specifications for each configuration item</td>
<td>maturity and provides an acceptable level of risk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(hardware and software), with supporting trade-off analyses and data, as</td>
<td>5. Adequate technical interfaces are consistent with the overall technical maturity and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>required.</td>
<td>provide an acceptable level of risk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Updated technology development maturity assessment plan.</td>
<td>6. Adequate technical margins exist with respect to TPMs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Updated risk assessment and mitigation.</td>
<td>7. Any required new technology has been developed to an adequate state of readiness, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Updated cost and schedule data.</td>
<td>back-up options exist and are supported to make them a viable alternative.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Updated logistics documentation, as required.</td>
<td>8. The project risks are understood and have been credibly assessed, and plans, a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Applicable technical plans (e.g., technical performance measurement plan,</td>
<td>process, and resources exist to effectively manage them.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control plan, parts management plan, environments control plan, EMI/EMC control</td>
<td>9. Safety and mission assurance (e.g., safety, reliability, maintainability, quality, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plan, payload-to-carrier integration plan, producibility/manufacturability program</td>
<td>EEE parts) have been adequately addressed in preliminary designs and any applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plan, reliability program plan, quality assurance plan).</td>
<td>S&MA products (e.g., PRA, system safety analysis, and failure modes and effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Applicable standards</td>
<td>analysis) have been approved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Safety analyses and plans.</td>
<td>10. The operational concept is technically sound, includes (where appropriate) human</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Engineering drawing tree.</td>
<td>factors, and includes the flow down of requirements for its execution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Interface control documents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Verification/validation plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Plans to respond to regulatory requirements (e.g., Environmental Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statement), as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. Disposal plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o. Technical resource utilization estimates and margins.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q. Preliminary limited life items list (LLIL).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Review Stages

- Review Planning
- Checkpoint
- Review Logistics and Preparation (Includes Training)
- Kickoff
- Review Execution
- Reporting to Management
- Review Item Discrepancy (RID) Burndown/RID Dispositioning Process
- Review Complete
Review Planning Life Cycle

<table>
<thead>
<tr>
<th>Development Phase</th>
<th>Execution Phase</th>
<th>Closeout Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Stage</td>
<td>Review Stage</td>
<td>Reporting Stage</td>
</tr>
<tr>
<td>Checkpoint Stage</td>
<td>Pre-Board Stage</td>
<td>Board Stage</td>
</tr>
<tr>
<td>Preparation Stage</td>
<td>Board Stage</td>
<td>Burndown Stage</td>
</tr>
</tbody>
</table>

Features
- ATP
- Plan Complete
- Checkpoint
- Kickoff
- Dispositions Complete
- Pre board
- Board
- CMC
- Review Complete

Objectives
- Develop and approve Milestone Review Plan
- Determine readiness to proceed to the review
- Finalize review plans
- Compile data package
- Prepare for Kickoff
- Hold Kickoff
- Generate, screen & disposition RIDs
- Hold Preboard to disposition RIDs and decide if criteria met
- Hold Board to disposition RIDs and determine Go/No-go
- Report review outcomes to external stakeholders
- Conduct activities to close RIDs
- Improve Process

Primary Participants
- PM (Decision Makers)
- CE / LSE
- Product Developers
- Checkpoint Board
- Product Developers
- Review Teams
- Board & Preboard
- SRB
- Product Developers
- Review Teams
- Screening Teams
- SRB
- RID Sponsors
- Pre-Board
- SRB
- RID Sponsors
- Board
- SRB
- PM
- PMC
- CMC
- Actionees

Primary Activities
- Determine Plan Parameters
- Baseline the Plan
- Provide data item status
- Conduct Dry Run
- Conduct Checkpoint
- Identify Participants
- Deliver Documents
- Participant Training
- Conduct Dry Run
- Conduct Kickoff
- Review Documents
- Conduct Tabletops
- Define Impacts
- Develop Dispositions
- Conduct Dry Run
- Conduct Pre-Board
- Conduct Dry Run
- Conduct Pre-Board
- Conduct Dry Run
- Conduct Board
- Conduct Board
- Conduct External Briefings
- Conduct PAL Sessions

Primary Products
- Program Decision Memo
- Review Plan
- ToR
- Review Package
- Data Package
- Pre-Declared RIDs
- Kickoff Presentation
- Kickoff Actions
- Pre-RID Schedule
- Board Decisions / Minutes / Actions
- Board Presentation
- Approved RIDs
- Board Presentations
- Approved RIDs
- Board Presentations
- Review Report / Presentations
- As-run Review Plan
- RID Closure Data

Support Participants
- Review Director
- Plan Doc Owner
- Data Mgmt. Support
- IT Support
- Review Director
- RID Coordinator
- Data Mgmt. Support
- Logistics Support
- IT Support
- Review Director
- RID Coordinator
- Data Mgmt. Support
- Logistics Support
- IT Support
- Review Director
- RID Coordinator
- Data Mgmt. Support
- Logistics Support
- IT Support
- Review Director
- RID Coordinator
- Data Mgmt. Support
- Logistics Support
- IT Support

Support Activities
- Establish Core Team
- Conduct CT Logistics
- Develop Plan Inputs
- Conduct Tabletop
- Manage Change Pkg
- Plan Review Logistics
- Prepare Checkpoint Package
- Conduct IT Logistics
- Train Support Staff
- Plan Kickoff Logistics
- Prepare Kickoff Presentation
- Conduct Kickoff Logistics
- Conduct Review Logistics
- Provide Review Support
- Plan Pre-Board Logistics
- Prepare Preboard Presentations
- Conduct PB Logistics
- Provide PB Support
- Plan Board Logistics
- Prepare Board Presentations
- Conduct Board Logistics
- Compile Lessons Learned
- Lessons Learned
- Make improvements to RID tool
- Prepare As-run Plan
- Manage Change Pkg
- Track RID Burndown

Support Products/Services
- Core Team Wiki
- Plan Change Package / Presentations
- CP Dropped item Q List
- CP Distro Lists / Invites
- KO Distro Lists / Invites
- KO Badges / Sign-in
- KO A/V Services
- KO Graphics Services
- KO Facilities Services
- KO Borrowed Items List
- KO Food Services
- Distro Lists / Invites
- Badges / Sign-in
- A/V Services
- KO Graphics Services
- KO Facilities Services
- KO Borrowed Items List
- KO Food Services
- PB Distro Lists / Invites
- PB Badges / Sign-in
- PB A/V Services
- PB Graphics Services
- PB Facilities Services
- PB Borrowed Items List
- PB Food Services
- Bd Distro Lists / Invites
- Bd Badges / Sign-in
- Bd A/V Services
- Bd Graphics Services
- Bd Facilities Services
- Bd Borrowed Items List
- Bd Food Services
- BD Tool enhancements
- Plan Change Package / Presentations

35
Example Table of Contents for a Technical Review

Plan

1.0 INTRODUCTION 7
1.1 Purpose 7
1.2 Scope 7
1.3 Change Authority/Responsibility 7
2.0 DOCUMENTS 8
2.1 Applicable Documents 8
2.2 Reference Documents 8
3.0 MILESTONE REVIEW PROCESS 9
3.1 Prepare for Review 9
3.1.1 Establish Review Schedule 9
3.1.2 Define Compliance Strategy 9
3.1.3 Define Data Package 9
3.1.4 Identify Review Participants 10
3.1.5 Training 11
3.1.6 Assess Readiness 11
3.2 Conduct Kickoff 12
3.3 Assess Success Criteria 12
3.4 Execute RID Process 13
3.5 Conduct Pre-Board 13
3.6 Conduct Board 14
3.7 Review Completion 14
4.0 REVIEW RESPONSIBILITIES 14
4.1 Review Director 14
4.2 RID Coordinator 15
4.3 Pre-Board/Board Secretariat 15
4.4 Document Developers 15
4.5 Review Teams 15
4.5.1 Review Team Leads 15
4.5.2 Review Team Members 16
4.6 Screening Committees 16
4.7 Pre-Board 16
4.8 Board 17
4.9 RID Actionee 17
5.0 REVIEW ITEM DISCREPANCY OVERVIEW 18
5.1 RID Processing 18
5.1.1 Identify RIDs 18
5.1.2 Conduct Tabletop Sessions 19
5.1.3 Conduct Screening Activity 19
5.1.4 Assess RID Impacts 20
5.1.5 RID Disposition 20
5.1.6 Pre-Board/Board Disposition 20
5.1.7 Close RIDs 21
5.1.8 Reclama Process 23
5.2 RID Criteria 23
5.3 RID Rules 23
5.4 RID Disposition 24
5.5 RID Tool 25
APPENDIX
APPENDIX A ACRONYMS AND ABBREVIATIONS AND GLOSSARY OF TERMS 26
A1.0 Acronyms and Abbreviations 26
A2.0 Glossary of Terms 28
APPENDIX B OPEN WORK 29
B1.0 To Be Determined 29
B2.0 To Be Resolved 30
APPENDIX C SYSTEM REQUIREMENTS REVIEW (SRR)/SYSTEM DEFINITION REVIEW (SDR) 31
C1.0 Overview 31
C2.0 Scope 31
C3.0 Review Web Site 31
C4.0 Schedule 32
C5.0 Entrance and Success Criteria 32
C6.0 Review Data Package 48
C7.0 Review Positions 53
C8.0 Review Team 53
C9.0 Screening Committee Membership 55
C10.0 Pre-Board Membership 56
C11.0 Board membership 57
APPENDIX D PRELIMINARY DESIGN REVIEW (PDR) 58
D1.0 Scope 58
D2.0 Review Web Site 58
D3.0 Schedule 58
D4.0 Entrance and Success Criteria 58
TABLE
TABLE B1-1. TO BE DETERMINED ITEMS 29
TABLE B2-1. TO BE RESOLVED ISSUES 30
TABLE C4-1. SRR/SDR SCHEDULE FOR STEP ONE OF THE SRR/SDR 32
TABLE C5-1. P/SRR ENTRANCE CRITERIA 33
TABLE C5-2. P/SDR ENTRANCE CRITERIA 34
TABLE C5-3. SRR ENTRANCE CRITERIA 36
TABLE C5-4. SDR ENTRANCE CRITERIA 37
TABLE C5-5. SUCCESS CRITERIA CATEGORY MATRIX 40
TABLE C5-6. SRR/SDR SUCCESS CRITERIA MATRIX (SCM) 43
TABLE C5-7. VSAD SUPPORTING DOCUMENTS 48
TABLE C6-1. SRR/SDR DATA PACKAGE BASELINED/TO BE BASELINED BEFORE THE REVIEW 49
TABLE C6-2. SRR/SDR DATA PACKAGE TO BE BASELINED AFTER THE REVIEW 50
TABLE C6-3. SRR/SDR DATA PACKAGE REFERENCE DOCUMENTS 52
TABLE C8-1. SRR/SDR REVIEW TEAM 54
TABLE C8-2. SRR/SDR REVIEW TEAM 54
TABLE C10-1. SCREENING COMMITTEE MEMBERSHIP 55
TABLE C11-1. BOARD MEMBERSHIP 57
TABLE D4-1. PDR SUCCESS CRITERIA MATRIX (SCM) 58
FIGURE
FIGURE 3-1. SLS ORGANIZATIONAL REVIEW TEAM TO SUCCESS CRITERIA MATRIX 11
FIGURE 5-1. RID PROCESSING OVERVIEW 18
FIGURE 5-2. PRE-BOARD/BOARD DISPOSITION PROCESS 21
FIGURE 5-3. RID CLOSEOUT PROCESS 22
Example Review Approach

• Review is focused on the adequacy of the technical approach focused on the program and vehicle integration

• MPR 7123.2A milestone success criteria and safety criteria are used to guide the assessment

• Review teams addressed program and vehicle integration of the system requirements, design definition and safety by assessing each of the success criteria from their perspective

• RIDs written against not meeting criteria – not against documents
Example Team Approach

- **Discipline Review Teams**
 - Organized by functional teams
 - Review teams to represent the implementation of the program, technical and safety organizations
 - Review Team Leads and team members are independent of the program or project being reviewed
 - Review teams served as dispositioning team for RIDs originating or assigned to their team

- **Screening Committee**
 - Led by Lead System Engineer
 - Membership included the review team leads

- **Pre-Board**
 - Chaired by the Chief Engineer
 - Membership defined in Program/Project Review Plan or in a memorandum

- **Board**
 - Chaired by the Program Manager
 - Membership defined in Program/Project Review Plan or in a memorandum
Example Review Schedule

<table>
<thead>
<tr>
<th>Description</th>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Package Delivered</td>
<td>2/1/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Pre-declared RID Cutoff</td>
<td>2/1/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Data Package Available</td>
<td>2/6/2012</td>
<td>2/6/2012</td>
</tr>
<tr>
<td>Kickoff Meeting</td>
<td>2/15/2012</td>
<td>2/16/2012</td>
</tr>
<tr>
<td>Data Package Review</td>
<td>2/16/2012</td>
<td>2/23/2012</td>
</tr>
<tr>
<td>Team Meetings</td>
<td>2/16/2012</td>
<td>2/23/2012</td>
</tr>
<tr>
<td>Pre-RID Submittal</td>
<td>2/16/2012</td>
<td>2/26/2012</td>
</tr>
<tr>
<td>Pre-RID Cutoff</td>
<td>2/26/2012</td>
<td>2/26/2012</td>
</tr>
<tr>
<td>Tabletop Meetings (discuss Pre-RIDs)</td>
<td>2/27/2012</td>
<td>3/6/2012</td>
</tr>
<tr>
<td>RID Integrated Screening</td>
<td>2/29/2012</td>
<td>3/8/2012</td>
</tr>
<tr>
<td>Document Developer/Actionee Response</td>
<td>3/9/2012</td>
<td>3/12/2012</td>
</tr>
<tr>
<td>RID Disposition Meetings</td>
<td>3/13/2012</td>
<td>3/19/2012</td>
</tr>
<tr>
<td>Pre-Board Preparation</td>
<td>3/20/2012</td>
<td>3/23/2012</td>
</tr>
<tr>
<td>Pre-Board</td>
<td>3/26/2012</td>
<td>3/27/2012</td>
</tr>
<tr>
<td>Board</td>
<td>3/29/2012</td>
<td>3/29/2012</td>
</tr>
</tbody>
</table>
Example Review Process

1. KICK-OFF
2. DATA PACKAGE REVIEW
3. REVIEW TEAM MEETINGS
4. CRITERIA TABLE TOP MEETINGS
5. PRE-BOARD
6. RID DISPOSITION MEETINGS
7. RID IMPACT ASSESSMENT MEETINGS
8. SCREENING MEETINGS
9. BOARD
10. RID CLOSURE
Human Factors
Human factors engineering is the discipline that studies the human-system interfaces and provides requirements, standards, and guidelines to ensure the human component of the integrated system is able to function as intended.
Four Categories of Human Factors

• The first is anthropometry and biomechanics—the physical size, shape, and strength of the humans.

• The second is sensation and perception—primarily vision and hearing, but senses such as touch are also important.

• The environment is a third factor—ambient noise and lighting, vibration, temperature and humidity, atmospheric composition, and contaminants.

• Psychological factors comprise memory; information processing component such as pattern recognition, decisionmaking, and signal detection; and affective factors—e.g., emotions, cultural patterns.

Reference: NASA/SP-2007-6105
Human Factors Engineering in the System Design Process

• Stakeholder Expectations

• Requirements Definition

☐ NASA-STD-3001, NASA SPACE FLIGHT HUMAN SYSTEM STANDARD VOLUME 1: CREW HEALTH

☐ NASA/SP-2010-3407, HUMAN INTEGRATION DESIGN HANDBOOK (HIDH)

• Technical Solution

• Usability Evaluations of Design Concepts

• Verification

Reference: NASA/SP-2007-6105
What does a Human Factors Specialist do at NASA?

The human factors specialist supports the systems engineering process by representing the users’ and maintainers’ requirements and capabilities throughout the design, production, and operations stages.

Reference: NASA/SP-2007-6105
Human Factor Specialist Roles

• Identify applicable requirements based on Agency standards for human-system integration during the requirements definition phase.

• Support development of mission concepts by providing information on human performance capabilities and limitations.

• Support task analysis and function allocation with information on human capabilities and limitations.

• Identify system design features that enhance usability. This integrates knowledge of human performance capabilities and design features.

• Support trade studies by providing data on effects of alternative designs on time to complete tasks, workload, and error rates.

• Support trade studies by providing data on effects of alternative designs on skills and training required to operate the system.

• Support design reviews to ensure compliance with human-systems integration requirements.

• Conduct evaluations using mockups and prototypes to provide detailed data on user performance.

• Support development of training and maintenance procedures in conjunction with hardware designers and mission planners.

• Collect data on human-system integration issues during operations to inform future designs.

Reference: NASA/SP-2007-6105
This team is the discipline center of expertise at Marshall.

The team's specialties are worksite design, usability, and human modeling.

The team has mockup development and use expertise, as well as CAD-based simulation.

We create human:systems interaction requirements, identify verification methods, and complete verification.
• MSFC HFE deals with a broad range of human interface design considerations

• Worksite design
 • Work, reach, & visual envelopes
 • Lighting
 • Tools & support equipment
• Human:Computer Interaction
 • Displays design
 • Usability testing
• Human:Robotic Interaction
• Effects of special space environments
 • Vibration (during launch)
 • Weightlessness
 • Ability to perform work tasks
• Habitability; not strictly HFE, but is system-level HF
• Tools

• Mockups
 • Wood, foamcore, plastic, metal
 • Fidelity appropriate to information needed
 • Typically, higher as design matures

• Human modeling

• Motion capture

• Neutral buoyancy
• History

• Skylab (first American Station) Crew systems
 • Life support
 • Crew quarters
 • Deconditioning mitigation
 • Displays and controls
 • Maintenance
 • Procedures & training
 • Skylab design:
 • Tektite underwater lab for habitability studies

• Shuttle
 • Payloads (science)
 • Procedures & training
 • Displays & controls
 • Maintenance
 • Hubble EVA
 • Maintenance
Recent

- International Space Station
 - Module design for crew use: similar to Skylab design work
 - Physical design for experiments (payloads) and subsystems, such as life support
 - For operation and maintenance
 - EVA design
- Constellation (moon program)
 - Worksite design for ground crews assembling Ares rocket
 - Vibration effects on astronaut task performance
- Deep-space habitability studies
- Single-person spacecraft studies

- Nodes 2 & 3: MSFC
- Robot arm delivery: MSFC design
- Space habitat concept evaluation
- FlexCraft
NASA Community of Practice Human Factors Link

https://nen.nasa.gov/web/hf
Questions
Closing Remarks