DTN

HOSC DTN Gateway Test Report

Cleveland, OH 2012
Status

• Goals of this activity
 • Test the HOSC DTN Gateway for operational use

• Current activity
 • Test the Implementation of a new DTN2 gateway at the HOSC
 • Confirm integration of DTN nodes into the S-band uplink and Ku-band downlink of the ISS for limited use
 • Implement Aggregate Custody Signal to ISS platforms
 • Verify operational support for CU onboard components
 • Verify ability to support METERON OpsCon-2
Status

- **HOSC DTN Node**
 - Couples payload uplink architecture with downlink delivery at the HOSC
 - Upgrade and virtualize the HOSC DTN nodes to 64 bit O/S
 - Move the implementation to DTN2.8
 - Add Aggregate Custody Signal into the HOSC DTN2 node
 - Implement ACS independently of ION
 - Feedback lessons learned and patches into the DTN2 community
 - Transition the HOSC with build 15 to support upcoming payload activities

May 2010
Status

Basic test configuration

- Prior to external testing, extensive test was completed internally
 - DTN2 to DTN2
 - ION (IOS) to DTN2
 - Live downlink stream thanks to cooperation from CU-Boulder

MSFC system requirements

- IVV/Simulation String - EHS software 15.x (MOP – IN32:Test)
- Test and Simulation Processor (TASP) - 5.0.1-6
- Payload Data Services System (PDSS) - PDSS 5.0.2
- PDSS DTN - DTN 2.1 (modified DTN2.8)
- Payload Rack Checkout Unit (PRCU)
- Telescience Resource Kit (TReK) Command Bridge

CU-Boulder system requirements

- CGBA4-0
- CGBA4-gse-0 - UCB telemetry -
- ION BP/TCP/ACS/ECOS
- ET2 – UCB command

May 2010
Status

Multi-site test layout
Status

• **Features to Be Tested**
 • Remote access to HOSC DTN services via an IPSec-compliant VPN
 • CGBA's utilization of the Aggregate Custody Signal (ACS) generated by a DTN2 implementation
 • Bundle traffic compliance with RFC 6260 (CBHE)
 • HOSC DTN nodes ability to support the Aggregate Custody Signal (forward telemetry bundles to CU-Boulder)
 • EHS software implementations for HM-3388/3410 to support DTN2
 • The mapping of DTN bundle activity to a UserID
 • The CU-Boulder onboard gateway's ability to support the HOSC DTN uplink capability
 • RFC 5050 compliant acknowledgements sent from the intermediate HOSC DTN node using DTN URI and IPN URI
 • Measuring sustained throughput capabilities of BP on Ku-downlink and with ACS in the S-band uplink.

May 2010
Six test scenarios were exercised

1. Test Acceptance of simple custody signal (non-ACS)
 - AOS CLA and DTN2 router processed APID 949 (CGBA4) bundles correctly
 - HOSC DTN router sends BP Custody Signals to the EHS command system for uplink to CGBA-0 via SSITF successfully
 - CGBA-4 at SSITF accepts command, CGBA4_DTN, properly
 - HOSC DTN router (DTN01a) sends non-ACS bundle to CU-Boulder (CGBA4-gse-0)
 - CU-Boulder receives non-ACS bundle and verifies content
 - DTN01A receives Custody Signals and bundles are deleted from the bundle store

Basic Bundle protocol behavior was verified
• Six test scenarios were exercised
 2. Test Acceptance of Aggregate Custody Signals (ACS)
 - AOS CLA and DTN2 router processed APID 949 (CGBA4) bundles correctly
 - HOSC DTN router (dtn01a) sends ACS to the EHS command system for uplink to CGBA-0 at SSITF successfully
 - CGBA4-0 at SSITF accepts command, CGBA4_DTN, properly
 - HOSC DTN router sends ACS enabled bundles to CU-Boulder
 - CU-Boulder receives ACS bundles and verifies content
 - DTN01A receives Aggregate Custody Signals (ACS) and bundles are deleted from the bundle store

Basic ACS protocol behavior was verified
Six test scenarios were exercised

3. Test IPN URI (w/ACS)
 - AOS CLA and DTN2 router processed APID 949 (CGBA4) bundles correctly
 - HOSC DTN router sends ACS utilizing IPN to the EHS command system for uplink to CGBA-0 at SSITF successfully
 - Bundle primary block was in CBHE format because all EIDs are IPN scheme compatible
 - CGBA4-0 at SSITF accepts command, CGBA4_DTN, properly
 - HOSC DTN router sends ACS enabled bundles to CU-Boulder (CGBA4-gse-0)
 - Bundle primary block was in CBHE format because all EIDs are ipn scheme compatible
 - CU-Boulder receives ACS enabled bundles and verifies content
 - DTN01A receives Aggregate Custody Signals (ACS) and bundles are deleted from the bundle store

CBHE behavior was verified
• **Six test scenarios were exercised**

 4. Test gaps in processed Custody IDs (induced manually) between bundles while utilizing ACS
 - AOS CLA and DTN2 router processed APID 949 (CGBA4) bundles correctly
 - HOSC DTN router sends ACS with multiple fills to the EHS command system for uplink to CGBA-0 at SSITF successfully
 - CGBA4-0 at SSITF accepts command, CGBA4_DTN and processes ACS with multiple fills properly
 - HOSC DTN router sends non-ACS telemetry bundles to CU-Boulder (CGBA4-gse-0)
 - CU-Boulder receives non-ACS telemetry bundles and verifies content
 - DTN01A receives custody signals (non-ACS) and bundles are deleted from the bundle store
 - HOSC expects missed bundles to be resent and subsequently acknowledged successfully
 - HOSC verifies that the gaps are represented accurately in the Command Delog (EHS application)

Result 3 and 7 were not achieved. Unacknowledged previously received bundles were retransmitted indicating only the first fill of the ACS was processed
Six test scenarios were exercised

5. Test for Queued ACKs on the HOSC-side
 - AOS CLA and DTN2 router processed APID 949 (CGBA4) bundles correctly
 - HOSC DTN router sends ACS to the EHS command system.
 - EHS command system holds the ACS in a queue ready for uplink when uplink conditions are acceptable.
 - EHS command system uplinks ACS bundles to CGBA-0 successfully
 - CGBA4-0 accepts command, CGBA4_DTN, properly
 - HOSC DTN router sends non-ACS bundles to CU-Boulder (CGBA4-gse-0)
 - HOSC expects missed bundles to be resent from CGBA4-0 at SSITF
 - CGBA4-0 receives first acknowledgement command and ignores the second acknowledgement command
 - CU-Boulder (CGBA4-gse-0) receives ACS bundles and verifies content

All items were successful but there were test unique items that required extra analysis. These were associated with the SSITF
• Six test scenarios were exercised
 6. Test of throughput of BP via Ku band downlink and S band uplink
 - Unable to test due to ION node being overwhelmed on the initial flood attempt
Status

• Follow-up testing is schedule for the last week of October into November
 - Performance testing at the platform and link level
 - Resolve and retest any areas where analysis has indicated concern
 - Validate the operational configuration
Backups