A Thermal Precipitator for Fire Characterization Research

Marit Meyer, NASA Glenn Research Center

Vicky Bryg, National Center for Space Exploration Research (NSCER), Microscopy
Outline

- Motivation – Fire Characterization Research
- Background
- Design goals
- Modeling
- Testing & Hardware
- Results
- Conclusion
Fire Characterization Research
at NASA Glenn Research Center

- Most likely source of a fire on the International Space Station is overheating electronic equipment
- Early detection (before flame develops) allows rapid crew response
- Spacecraft fire safety is unique
 - No natural convection to concentrate smoke at ceiling
 - Smoke generated will disperse slowly through the cabin by forced convection caused by the ventilation flow
 - Approximately 10-15 cm/s but depends on location, stowage, etc.
ISS Destiny Smoke Detection Simulation-25% Soot

Low-gravity

Normal-gravity
Fire Characterization Research

- Next-generation space fire detectors will consist of
 - Aerosol sensors
 - Gas sensors
- Multiple small, low-power sensors will allow distributed detectors and more rapid fire response

 Appropriate alarm thresholds will minimize false alarms
Fire Characterization Research

• Need: Characterize aerosols and gases produced by overheating common spacecraft materials

• A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis

• Information on particle morphology, size and agglomerate structure supplements other aerosol and gas data obtained in fire research
Fire Characterization Research

- Test smoke
 - Kapton, Teflon, circuit board, wire insulation, Nomex
 - 300° C to 640° C
 - 1×10^5 to 1×10^6 particles/cm3
 - 40 to 70 mg/m3
 - $100 \text{ nm} < d_p < 1000 \text{ nm}$
Fire Characterization Research

- Goal is to characterize smoke
- Verify a repeatable fire challenge for testing
 - Aerosol instruments
 - Gas sensors
 - Post-fire clean-up equipment
- Multiple NASA smoke test facilities
 - Slightly different burn methods
 - Check fuel preparation consistency
Thermophoresis

- Thermophoretic force, F_{th}, on a particle is the result of a temperature gradient established in the gas medium
 - The force is in the direction of decreasing temperature
- For small particles (large Knudsen number) thermophoresis is explained by kinetic theory of gases
- In the transition and continuum regimes, Navier Stokes equations with slip-corrected boundary conditions have been used
Thermophoresis

- The thermophoretic force on an aerosol particle can be expressed as \(F_{th} \) (Brock, 1962)

\[
F_{th} = -6\pi\mu vd_p C_s \left(\frac{k_a}{k_p} + C_t Kn \right) \frac{\nabla T}{T} \frac{1}{(1+3C_m Kn) \left(1+2\frac{k_a}{k_p} + 2C_t Kn \right)}
\]

- \(\mu \) = viscosity of air
- \(\nu \) = kinematic viscosity
- \(d_p \) = particle diameter
- \(k_p \) = particle thermal conductivity
- \(k_a \) = air thermal conductivity
- \(Kn = \text{Knudsen number, } 2\lambda/d_p \)
- \(\nabla T \) = Temperature gradient
- \(T \) = Absolute temperature of particle

\(C_t = 2.18, C_m = 1.14, C_s = 1.17, \text{ thermal exchange coefficients (Taibot et al., 1980)} \)
Design

- Develop a portable device for sampling smoke aerosol particles for microscopy
- Collect particles on easily inserted substrates for microscopy
 - Scanning Electron Microscope (SEM) aluminum specimen mount
 - Hitachi stubs with threaded hole
 - Transmission Electron Microscope (TEM) grid
 - Attach to aluminum stub with carbon tape
Design

- Reduce aerosol flow from $\frac{1}{4}$” tubing inlet to very narrow gap
 - Laminar flow
- Highest possible temperature gradient achievable with minimal thermal management (power, size)
 - Thermoelectric coolers (TE)
Design

- Particle residence time in TP is controlled by
 - Flow rate
 - Height of gap
 - Length of body
 - Temperature gradient

- Multiphysics finite element model determined reasonable combination of these variables
 - Computational Fluid dynamics
 - Thermal
 - Particle trajectories
Modeling: CFD

- Spline function for contour of entrance region
- Body lengthened to increase residence time
- Gap height adjusted
- 150 cm³/min or less flow rate
Modeling: Thermal

- Design iteration from model results
 - Increased area of constant thermal gradient
Modeling: Trajectories

- Particle trajectories based on combined physics in numerical model
 - Slip-corrected Stokes drag and thermophoretic force
 - Average value of particle thermal conductivity 0.19 W/m-K
 - Multiple particle sizes: 100 nm, 500 nm, 1000 nm
Modeling: Trajectories

- SEM stub locations
- Final flow rate
Hardware

- Thermoelectric (TE) coolers and Kapton heater provided temperature gradient
 - Gap height 1.25 mm
 - No direct temperature control, only ΔT of cooler
 - Efficiency of heat removal from the hot side of the TE cooler established the gradient
Thermal Design Iterations During Testing

- Permanent thermocouples on cold plate and heated plate
- Improve heat removal from TE cooler
 - Larger fin surface area & larger fan
- Increase contact conductance between stubs, TE coolers and heat sinks
- Add insulation
Testing

• Achieved 70° C temperature gradient with 8 to 10 minute warm-up time
 • Heated plate ~ 65° C
 • Cold plate ~ -5° C

• Sampled filtered air with TP for an hour
 • Verified no particles on stubs

• Verified PSL particle collection
 • 1.0, 0.67 μm and 100 nm

• Condensation issues during testing with PSL aerosol generation from aqueous solution
 • Smoke chamber dew point ranges from -9° to -18° C
Packaging

- Aluminum housing positions fan and directs air onto heatsink for heat removal
- Lid opens for access to SEM stubs
Wire Insulation 640° C

SEM stub

0.2 μm

0.1 μm

0.5 μm

4 μm

0.3 μm

1 μm
Kapton 640° C

SEM stub

0.8 μm

2 μm

d_g = 225 nm
Kapton 640° C

SEM stub

0.8 μm

2 μm

0.5 μm

0.25 μm

1 μm
Teflon 640°C

1.7μm
0.4μm
0.2μm

SEM stub

2 μm

\(d_g = 240 \text{ nm}\)
Teflon 640° C

SEM stub

TEM grid

$1.7 \mu m$

$0.4 \mu m$

$0.2 \mu m$

$2 \mu m$

250 nm

20 nm
Conclusion

- Thermal precipitator designed, modeled and tested
- Successful particle collection
- Fire characterization research ongoing
 - Aerosol/gas kinetics
Acknowledgment: Daniel Gotti contributed to the mechanical design and did the CAD model for this project
Backup Slide: Thermoelectric Cooler

- Also known as Peltier cooler or heater
- Creates a heat flux between the junction of two different types of materials (N and P-type semiconductor pellets)
- Datasheet gives ΔT_{max} (between each side of cooler), cooling capacity, current and voltage restrictions

Backup Slide

- Carbon tape strip placed in the direction of flow
- TEM and HRTEM grids are attached to carbon tape
 Backup Slide