Satellite trace gas sensing modeling for missions such as ASCENDS

Requirements and approach
- **ASCENDS** is a mission that monitors trace gases in the atmosphere from space.
- **Passive observations** are advantageous for climate modeling and atmospheric sensing.
- **Applicable to other sensing missions such as ASCENDS** and a variety of molecules including CO2, CH4, N2O, etc.
- **Projected space oxygen distributions**

Benefits for climate science
- **Quantify global spatial distribution of CO2** on a time scale of months.
- **Quantify the seasonal cycle** of CO2 and other trace gases.
- **Quantify the sensitivity of the Earth system** to changes in atmospheric CO2.

NASA LCLC ASCENDS approach
- **1.5% accuracy** (coefficient on CO2), mixing ratio calculation is required NASA Langley Research Center (LaRC) is developing an intensity mixing ratio instrument called a LCLC that uses a combination of terrestrial and solar radiation to quantify the mixing ratios of CO2, CH4, and N2O.

Pre-analyzed atmospheric data for error analysis

Analysis and processing of the MERRA dataset

Combining individual layer error estimates

Global annual temperature sensitivity analysis for CO2 and O2 bands

Global annual temperature sensitivity analysis for alternative CO2 bands

Global annual temperature sensitivity analysis for alternative O2 bands

Wavelength instability effects

Fig 2.3 Pre-averaged annual temperature sensitivity analysis for CO2 bands.

Fig 2.5 Pre-averaged annual temperature sensitivity analysis for O2 bands.

Fig 2.7 Pre-averaged annual temperature sensitivity analysis for alternative CO2 bands.

Fig 2.9 Pre-averaged annual temperature sensitivity analysis for alternative O2 bands.

Conclusions and further work

- **Future observations** will be required for improved accuracy.

References

DENIS PLITTAU, NARASIMA S. PRASAD (narasima.s.prasad@nasa.gov)

NASA Langley Research Center, Hampton, VA