What Do We Play?

- The Game is:
 - Multi-Decade, Massive, Complex System Conception, Design, Development and Operations
 - Targeted towards a hostile and unforgiving environment
 - With a gifted, diverse and distributed group of friends
 - With the goal of getting as far off the planet as possible

- The Rules are:
 - Physics / Teams / Process / Science / Story
 - Time / Distance / Culture / Goals
Who Plays, The Goals

- Players:
 - Government
 - We will be buying large systems
 - DoD more than NASA of course, but the principles are the same
 - Industry
 - Design – A lot of simulation based cooperation
 - Development – A lot of simulation based cooperation
 - Manufacturing – We have work to do

- Goals:
 - Share some of what we (NASA) have done
 - Elicit and get help with the next steps

Things We Do

- We Model
 - We represent the thing we want to study
 - With as much detail as is necessary for that study

- We Simulate
 - We represent behavior of the thing(s) we want to study
 - With as much detail as is necessary for that study

- We Decide
 - We look at the things, and how they behave, determine the next step(s) and communicate the results of the study
 - With as much detail as is necessary for that study
Things We Want

We All Want:
1. System Knowledge Sooner
2. Design Flexibility Preserved
3. Resource Commitments Delayed

Simulation Helps Us Get Them

And, along the way we create artifacts that we can share, that increase understanding and allow us to access additional expertise
But, Multi-Decadal & Interdependent is Hard

We know a Bit About Simulation Tools and Technologies

Constellation
Modeling and Simulation
Some Constellation Data

• Constellation was made of multiple Projects
 – That needed to be able to work together for 50+ years
• Simulation was a massive team that shrank massively
 – 80 to 8, neither was a good number
• The Product Data Manager (PDM) was going to make everything work fine
 – Um, if you have a mess, and you automate it, you get a highly automated, high speed mess
• We Reorganized and built a new Simulation organization
 – I found out I was the leader in the roll out teleconference
 – I got a PDM with a Common Model Library

We Did Have Some Things

• We looked at Constellation's Tools
 – We found where the Data and Information were stored
 – We mapped how both flowed through the system and identified how to get them out
 – We normalized them so we could share the Knowledge
• We had distributed, physics based simulations
 – Could share data across the country
 – First internally, in Modeling and Simulation Labs (MSL) #1
 • A full mission flight simulation from Kennedy to ISS
 – Then externally, in Virtual Mission (VM) #1
 • MSL # 1 plus the assembly, prep, paper processes and test phase
• It All Looked Like This...
MSL 1, VM 1, Ares 1 Launch

Upper Stage / Orion Separation
Orion Docking at ISS

All Streamed to a Visualization Server (game)
Did It Work? YES!

- We had:
 - Distributed Simulation and Visualization, Common Data Formats, Centralized Storage, Royalty Free Tools, Common Interfaces and were close to voluntary Program wide data integration
- Along the way:
 - We performed Program wide simulations, with real physics
 - We performed simulation based Program integration (the bolts)
 - The results were preserved in a Distributed Visualization System we could share with partners and friends while preserving their IP
- Within a year we had
 - Demonstrated simulation based program integration
 - Taught teams how to share their knowledge
 - Royalty free tools, with standard interfaces, that preserved IP
 - Constellation was Cancelled

A Orion Simulation
Ogive Panel Installation

CxP Ground Operations Project
Modeling and Simulation
Install Ogive Panels in VAB

- They Protect Orion
- Hundreds of Bolts
- Very Difficult Access
- In Critical Path

Ogive Human Factors Detail (Delmia)

Sim. Session Showed
- Could Assemble on Floor (off line)
- Would fit over Launch Abort System
- Safer, Faster, Concurrent

(this was discovered during the concurrent design session)
Did It Work? YES!

- We had:
 - The Vehicle Assembly Building, Mobile Launcher and Ares 1 all in one simulation, down to the lights, hand railings and fire system
 - Pulled multiple disciplines into the same room to concurrently design and review systems and processes
 - New concepts that reduced risk, schedule and cost

- Along the way:
 - We included Operations, Design, Development, Planning and the associated Program leadership
 - We demonstrated value of a dedicated Simulation or CAD Integration team and started a "by the pound" service subscription model

Exploration Systems Example
The Habitat Demonstration Unit

Exploration Habitation Project
Modeling and Simulation
HDU Overview

• Vision
 - Develop, integrate, test, and evaluate a Habitation prototype to better understand mission architectures, requirements and operational concepts

• Timeline
 - Project Kick-off: June 2009
 - Shell: October 2009 – April 2010
 - Systems Integration: April – August 2010
 • 10 Month Build, 4 Month Integration
 - Field Test at Desert RATS September 2010

• Participation
 - Jointly managed and built across 3 Time Zones with subsystems from 7 Centers

CAD Based Integration - Interior
CAD Based Integration - Exterior

Concept Realization (15 Months to Field)
Concurrent Design Lessons

• CAD integration rapidly grew to system simulation, then concurrent development
 – Concepts were matured in design sessions
 • Concept developed, “model” updated, package base lined
 • Design completed, “model” updated, systems built
 • Multiple Centers, Teams, Projects, Time Zones and Budgets

• Success not just because of Simulation
 – Leadership prioritized decisions such that time critical elements were decided on first
 • Even if only allocations
 – Simulation Screen Shots became a key communication path
 • Timely, Enhanced Understanding, Converged Ideas

So, Altogether

• We had:
 – Common Data Formats, Centralized Storage, Concurrent Design, Free Tools, Common Interfaces, Voluntary Data Integration and the results preserved in a Distributed Visualization system
 – The ability to share data and decisions with partners and friends while preserving IP

• And, we had a Simulation based integration service available for purchase “By the Pound”
 – 1986 to 2006 (Gov. computers, software and scanners)
 • Reduced system costs from $1M to $250K
 • Reduced cost of a simulation minute from $90K to ~$5
 • Increased ROI from 6:1 to 200+:1
 – 2006 to Present (Vendor computers, software and scanners)
 • Simulation development is $150 an hour, or still about $5 a minute
 • And, not my $250K systems anymore 😁
Next Problem(s):

- How to share our information with manufacturers
 - Without providing an unfair advantage
 - So you can tell me what I should really be doing
 - And, without going to jail

- How to get manufacturer information
 - So I can include it in the decision process
 - And, preserve your intellectual property

- Or, how to find out I could use a #42 widget from a ship or submarine or plane to meet my need
Today's Goals Were To:

- **Share:**
 - Successes and Benefits realized due to opening the design table to Operations teams

- **Begin to Create:**
 - A way to re-achieve those Success and Benefits by doing the same with Manufacturing Teams
 - Planners, Engineers, Technicians, Managers, Stewards, Leaders

- **Keep the lawyers really bored**
 - By protecting everyone's IP
 - By ensuring a level playing field
 - By playing nice across time and space

Remember This?

- **Time (50 years)**
- **Us**
- **Our Kids**
- **Our Grandkids**
We Are Here

Time (50 years)

Us Our Kids Our Grandkids

Thank you

mike.conroy@nasa.gov
Backup Data

I Think

• I can share some information with all manufacturers
 – If it can really go to everyone and it is efficient to use
 – And, if I actually know what is useful to share
 • “what I plan to do” and “what I plan to do it with”?

• I can get information from manufacturers
 – If I understand and can preserve their IP
 – And, if I actually know what is useful to get
 • “relevant systems” and “production figures of merit”?

• And then, I can add it all together such that
 – We design, build and deploy the most efficient, effective and buildable systems ever conceived
 – And the lawyers and the procurement people approve
Looking Forward (2030’s)

- Workers will be younger than systems they are building
- Tools and Technologies change every few years
- Information created will be needed in 2060
- They need information from 2010
- The project team spans 11 time zones and 4 languages
- Model Re-Use and MBSE are going to save us
 (Just like PDM/PLM made it all better back in the 2020’s)

- We really need to learn to Re-Use models starting Now!
 - So they can fit in the future above

So, I Know:

- There are common goals across all projects
 - We want to know more, earlier in the lifecycle
 - We want to preserve our design flexibility until the last moment
 - We want to delay our resource commitments, at least until we know what we really need

- We have has some success
 - Design, development and operations teams at the table
 - With simulation based information and enabling processes
 - Can dramatically shorten design cycles and reduce costs

- There are open seats at the table and some challenges
 - We are missing people that actually create what we will use
 - We are missing a way to talk to them
Because it Enables...

Simulation Based Concepts, ideas and Architectures Lead to...

Simulation Based System Designs that then Lead us to...

Simulation Based Integration and Operations,
And, that gets us...

First, We What Did We Really Have

- Core and Common elements across the projects
 - **Knowledge**: Decisions, Experiences, Expertise
 - **Information**: Reports, Recommendations, Rationale
 - **Data**: Numbers, Pictures, Models, Equations

- Knowledge is hard to share
 - It is in peoples heads; they are attached to them

- Data is fairly easy to share
 - Just record it; lots and lots of disks
 - Finding it later is another matter (common model libraries)

- Information is somewhere in the middle
 - It requires data, but also a lot of other stuff
But, We Have a Lot Left To Learn

Time and Space are Huge
50 to 100 years
Planets, Countries, Partners

Going Forward

- Just wanting to meet huge new challenges is not enough
 - We must learn how to start meeting them today
 • With our partners, whomever they are, wherever they are
 - We must enable our children to finish tomorrow
 • Simple and persistent mechanisms to communicate with them
 whenever they are
- We must Learn how to Play Nice, Together, Across Space and Time
NASA Integrated Model-centric Architecture (NIMA) Initiative

Model Use and Re-Use Team
(Playing Nice with Models)

The Roles (Players? Positions?)

- **Executive:**
 - Mission, Policy, Partnerships, Resource Plans, Goals

- **Architecture Development:**
 - Concepts, Partnerships, ConOps, Milestones, Parametrics, Cost

- **Program Development:**
 - Systems, SoS, SysML, IRDs, Milestones, ConOps, MBSE, Cost

- **Project Development:**
 - MBSE, Requirements, Design, ConOps, ICDs, Cost, Schedule

- **Engineering:**
 - Design, Systems, Procedures, Cost, Schedule, Mass, SW, Stuff
Some Rules

• Communication Methods
 - Role Above = Customer = Provider of $$ and Goals
 - Role Below = Supplier = Provider of Stuff that Works
 - You must to Customer in their language
 - You can talk to the Supplier in your language
 • But you need to make sure they understand

• Scope or Span of Vision
 - Each Role has norms that must be respected
 • organizational physics, motivation, rewards
 - You can look across multiple roles, but to see successfully, you
 must acknowledge and honor local norms

Boundaries and Gates (for the Field)
Portfolios Change Over Time

<table>
<thead>
<tr>
<th>Role</th>
<th>Starts With, Heavily Involved</th>
<th>Moves To, Receives from Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive</td>
<td>Early Artwork, Sketches, Goals (pictures, simple spreadsheets)</td>
<td>Parametric Data, System Simulations (system simulations, cost / performance models)</td>
</tr>
<tr>
<td>Architecture</td>
<td>Early Concepts, System Segment Simulations, Parametric Data</td>
<td>Architecture Models, System Sims</td>
</tr>
<tr>
<td></td>
<td>(pictures, animations, tables)</td>
<td>(SysML, lifecycle simulations, cost / performance analysis)</td>
</tr>
<tr>
<td>Program</td>
<td>Early System Models, Program Simulations, Scenarios (spreadsheets, animations)</td>
<td>Program/Cost/Performance Sims</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SysML, program models, discrete event simulations)</td>
</tr>
<tr>
<td>Project</td>
<td>Early Concepts, System Simulations, Parametric Analysis</td>
<td>System Simulations, Process Simulations, Design Visualization</td>
</tr>
<tr>
<td></td>
<td>(databases, SysML models)</td>
<td>(MBSE, PM software, DES, Catia)</td>
</tr>
<tr>
<td>Engineering</td>
<td>Concepts, Sub-System Simulations, Parametric Data, SysML</td>
<td>CAD/CAE, PDM/PLM, System Sim.</td>
</tr>
<tr>
<td></td>
<td>(concept sketches, requirements)</td>
<td>(Pro-E, Windchill, Catia, Unigraphics, DOORS, Cradle, FEA, ...)</td>
</tr>
</tbody>
</table>

Some Methods and Patterns to Organize Things

From NIMA Use and Re-Use
Data Methods and Tools

- **Data Organization**
 - I need a place work, with my team structure, with my options, studies, options and alternatives.
 - I need a place to release it, in the project or product structure, to my parents or my children, with appropriate indicators for credibility of that information.

- **Data Sharing**
 - I share data with my Customers. I get it from my Suppliers, integrate the results, add value and give it to them.
 - I share data with my Suppliers. I get it from my Customer, decompose as necessary, and give it and any additional data to them.

Process Patterns (Decomposition)

- **Leadership**
 - Creates and shares the architecture, con-ops, scenarios, decompositions and plans

- **System Engineering**
 - Leads the MBSE effort, decomposes and owns the system model, system requirements and stands up the PDM
 - This is a Critical Art with few masters

- **Engineering**
 - Creates relevant system and sub-system models, assigns work, decomposes and composes information and controls tasks

- **Everyone**
 - Shares data up and down, with associated credibility information and complying with project guidelines, methods and tools
Process Patterns (Composition)

- **Program / Project Manager**
 - Identify goals and dates, products, expected credibility, integration / testing dates, artifacts and formats that will enable later information utilization

- **System Engineer(s)**
 - Create list of Review products that are necessary for the review
 - Lead Review and ensure necessary artifacts exist, are shared, and are preserved.

- **Data Systems**
 - Preserve the appropriate artifacts for existing use and re-use by future generations
 - With all the necessary supporting information that will be needed

Score Sheet

- To communicate the rigor, fidelity and pedigree of our work (Credibility), across distance and years
- We used NASA Standard 7009
 - 8 categories, 5 levels per category
 - Range from "No Evidence" to "Best Possible" Credibility
Simulation Maturation, Crewed Mission

- As Systems mature, Credibility should increase
- Below is the Constellation recommended maturation

<table>
<thead>
<tr>
<th>Verification</th>
<th>Validation</th>
<th>Input Pedigree</th>
<th>Results Uncertainty</th>
<th>Results Robustness</th>
<th>Use History</th>
<th>M&S Management</th>
<th>People Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Simulation Maturation, Small Flight Project

- A Small Flight Project Credibility Profile from the 7009 Team

<table>
<thead>
<tr>
<th>Verification</th>
<th>Validation</th>
<th>Input Pedigree</th>
<th>Results Uncertainty</th>
<th>Results Robustness</th>
<th>Use History</th>
<th>M&S Management</th>
<th>People Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Peer Review SRR PDR CDR O/FRR
MCR SRR PDR CDR O/FRR
NIMA, a year or so later...

• We have Roles, Rules
 – And understand some Temporal constraints

• We have Patterns we can share across teams
 – And ways to encourage following them

• We are Re-Looking at almost everything
 – Concept of Operations, Product Data Management, Product
 Lifecycle Management, SysML Tools, Data Architectures and all the
 supporting tools in a new light
 – We are still discovering new things we did not know

• We have an understanding of Projects vs. Initiatives
 – NIMA is definitely and Initiative. It lacks the focus, financing, and
 programmatic benefits of a Project. It means things will be slow.
 – But, I was there when the examples I shared were just Initiatives,
 and feel good about this one too