Lightweight, High-Temperature Radiator for Space Propulsion

R.W. Hyers and B.N. Tomboulian
University of Massachusetts
160 Governors Dr., Amherst, MA 01002
413-545-2253, hyers@ecs.umass.edu and btomboul@engin.umass.edu

P.D. Craven and J.R. Rogers
NASA MSFC
Mail Code EM 50, Huntsville, AL 35812
paul.craven@nasa.gov and jan.r.rogers@nasa.gov

For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

This work was supported in part by the NASA MSFC Center Innovation Fund and by NASA Space Technology Research Fellowship NNX11AM70H from the Office of the Chief Technologist.
Lightweight, High-Temperature Radiator for Space Propulsion

Robert W. Hyers and Briana N. Tomboulian
University of Massachusetts, Amherst, MA

Paul Craven and Jan Rogers
NASA MSFC

Supported in part by NASA MSFC Center Innovation Fund and NASA Space Technology Research Fellowship #NNX11AM70H.
Outline

• Radiators for advanced propulsion

• Materials for radiators

• Modeling and testing novel radiator materials

• Results to date

• Conclusions and Future Work
Nuclear Electric Propulsion (NEP)

NASA’s Target Power Level: 100kWe
Heat Rejection

- Radiation is the only heat rejection mechanism to space (no conduction/convection)
- Waste heat depends on
 - Power level
 - Thermal efficiency of the engine
- Amount of heat rejection per unit area of radiator
 - Cold-side temperature, T
 - Environmental temperature, T_{env}
 - Surface emissivity, ε

\[
\eta_{Th} = \frac{W_{net}}{Q_{in}} = 1 - \frac{Q_{waste}}{Q_{in}}
\]

\[
q = \varepsilon \sigma (T^4 - T_{env}^4) \text{ [W/m}^2]\]

\[
\text{Area} = \frac{Q_{waste}}{\varepsilon \sigma T^4}
\]
Why are better radiators required?

- To Date:
 - Previous propulsion methods did not require large radiators:
 - Chemical rockets reject most heat with the exhaust gas
 - Electric propulsion systems have used solar power, which does not require much heat rejection
 - Low temperature heat rejection <100°C
 - Existing radiator designs don’t meet NASA’s areal density goal for NEP of 2-4 kg/m²

- Goals:
 - Decrease areal density
 - Increase capabilities
 - High temperature applications
 - Damage tolerance → extended lifespan
Radiator Mass Reductions

1. Decrease fin areal density
2. Increase fin emissivity (but already \(\rightarrow 1 \))
3. Increase cold-side temperature (decreases the fin area)
4. Reduce thermal resistances at interfaces

Even a small increase in efficiency can have a significant impact for a component this large
Typical Fin Constructions

Wrapped Fin

Structural Panel
<table>
<thead>
<tr>
<th>Fin Material</th>
<th>High Temperature Tolerance (Want HIGH)</th>
<th>Axial Thermal Conductivity (Want HIGH)</th>
<th>Density (Want LOW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Carbon-Carbon Composite</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Carbon-Polymer Composite</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bare Carbon Fiber</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
Materials
Thermal Conductivity of Carbon Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Axial/In-Plane Conductivity at Room Temperature (300K) [W/(m-K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene Sheet</td>
<td>3080–5300</td>
</tr>
<tr>
<td>Carbon Nanotube (CNT)</td>
<td></td>
</tr>
<tr>
<td>Single-Walled (SW)</td>
<td>3500</td>
</tr>
<tr>
<td>Multi-Walled (MW)</td>
<td>3000</td>
</tr>
<tr>
<td>SW-CNT Bundles</td>
<td>1750-5800</td>
</tr>
<tr>
<td>Diamond</td>
<td>2200</td>
</tr>
<tr>
<td>Carbon Fiber</td>
<td>600-1500</td>
</tr>
<tr>
<td>Natural Graphite</td>
<td>130</td>
</tr>
<tr>
<td>CNT Cloth</td>
<td>40, 250 (600°C)</td>
</tr>
<tr>
<td>CNT "As-Grown" Mat</td>
<td>35</td>
</tr>
</tbody>
</table>

Image: [67]
Materials Used in Test

IR image of carbon fibers with a heater temperature of 600°C.

IR image of carbon nanotube cloth with a heater temperature of 600°C.

IR image of oriented CNT composite (Dennis Tucker) with a heater temperature of 600°C.
(a) An unstretched composite sheet with wavy nanotubes and microscale porous structure and (b) a composite sheet stretched by 12%, showing straight, well-aligned and closely-packed nanotubes.[*]

Fin Material Comparison
Fin Geometry Optimization

![Graph showing total normal heat flux per unit mass against fin length for different TH values at 600°C.](image)

- **T_w = 4 K**
- **Symmetry Line**

600°C

- TH 5E-5
- TH 1.24E-4
- TH 3.10E-4
- TH 0.00105
- TH 0.00260
- TH 0.00878
- TH 0.02187
- TH 0.1
Preliminary Tests

- Test article: Inconel 718 pipe, TiCuSil braze, Mitsubishi KI3C2U (pitch) carbon fiber
- Evaluate basic fin performance and component compatibility
- Verify imaging capabilities
- Validate basic model
Model Progress

- May campaign: good qualitative fit

\[t_{\text{meas}} = \frac{\left(\frac{\text{mass}}{\text{length}} \right)}{\left(\text{density} \right) \left(\text{width} \right)} \]
Unshielded Fin

- Each element of the fin is heated by direct radiation from the tube, as well as by conduction along fin.
- Analytic calculation shows radiation from tube is about 9.8 W/m of width, vs. conduction about 7.4 W/m.
- Total heat transfer is sum of radiation and conduction.
- Apparent thickness would be 2.3 X measured.
- Discrepancy between model and experiment explained.
Shielded Fin

- Isolate conduction along fin
- Water-cooled copper heat shields added.
Model Progress: Shielding Fins

Quantitative agreement between model and experiment using measured thickness and no free parameters.
Lessons from Comparison of Model and Experiment

- Quantitative agreement between model and experiment for best samples, shielded fins.
- Large variability in temperature distribution in IR images, particularly for irregular samples.
 - Need very controlled sample geometry
 - Braided fiber specimens?
Woven carbon fiber manufacturing pathfinder, made at MSFC from Mitsubishi K13D2U high-conductivity carbon fiber. This article is approximately 30 cm x 3 and contains 30 tows, approximately 90,000 carbon fibers.

Commercial unidirectional carbon structural fiber

First generation article brazed from individual tows.
Facilities / Components
Generic Heater Setup

Vacuum Braze Facility

Sample Braze

Latest Version of Heat source for Radiator and Braze Facility
Shielding Fins

- Isolate conduction along fin
- Water-cooled copper heat shields added.
Future Work

- Increase the upper operating temperature
- Quantify device performance
- Assess the potential of such devices and materials to meet NASA’s needs for high-temperature radiators for spacecraft
- Recommend further refinement and characterization of similar devices
Questions
References

BACKUP SLIDES
Radiators are an Essential Cross Discipline Supporting Technology

- **TA02 In-Space Propulsion Systems**
 Supporting technologies...
 2.4.4 Heat Rejection
 Heat rejection is a key supporting capability for several in space propulsion systems. Some examples include rejection of the waste heat generated due to inefficiencies in electric propulsion devices ... In general the key heat rejection system metrics for in-space propulsion are cost, weight, operating temperature, and environmental durability (e.g. radiation, MMOD).[1]

- **TA03 Space Power and Energy Storage**
 5.3. Additional / Salient Comments from the NRC Reports
 To place the priorities, findings and recommendations in context for this TA, the following quotes from the NRC reports are noteworthy:..... “Fission: Nuclear reactor systems can provide relatively high power over long periods of time. ... Other components have reached higher TRLs in past programs such as the SP-100 and Prometheus programs, but technology capability has been lost and must be redeveloped. Key subsystems that must be addressed include ... heat transfer, heat rejection....”[3]

- **TA14 Thermal Management Systems**
 2.2.3.1. Radiators
 Radiator advancement is perhaps the most critical thermal technology development for future spacecraft and space-based systems. Since radiators contribute a substantial portion of the thermal control system mass. For example, the Altair (Lunar Lander) vehicle radiator design represents 40% of the thermal system mass. Radiators can be subdivided into two categories; the first is for rejection at temperatures below 350 K and the second is for nuclear or high power systems at temperatures around 500 K.[2]
Stated Goals

- A test bed facility and methods for quantification of the performance of radiators made from novel materials
- Demonstration of fabrication methods for novel radiators
- A validated predictive model to support future design and analysis efforts
- Quantification of device performance/assessment of potential.
- Identification of refinements to improve the model and device design.
- Model validation against the experimental results
- Integrate modeling efforts with the test efforts so that test data can be used to anchor and validate the existing model
- Assessment of the potential of such devices to meet NASA’s needs for high-temperature radiators for spacecraft
- Recommendations for further refinement and characterization of similar devices
Accomplishments

• The use of carbon fibers for the radiator material.
• The fabrication and testing of several sub-scale test articles.
• The quantitative agreement between modeled and experimental temperature distribution.
• The design and construction of a heater arrangement that isolates the conductive properties of the samples from the radiative effects of the heat pipe.
• The construction of a vacuum brazing facility for attaching the carbon based fibers to the heat pipe simulator.
Score Card

Stated Objectives

- A test bed facility and methods for quantification of the performance of radiators made from novel materials.
- Identification of refinements to improve the model and device design.
- Demonstration of fabrication methods for novel radiators.
- A validated predictive model to support future design and analysis efforts.
- Model validation against the experimental results.
- Integrate modeling efforts with the test efforts so that test data can be used to anchor and validate the existing model.
- Quantification of device performance/assessment of potential.
- Assessment of the potential of such devices to meet NASA’s needs for high-temperature radiators for spacecraft.
- Recommendations for further refinement and characterization of similar devices.

Accomplishments

- The design and construction of a heater arrangement that isolates the conductive properties of the samples from the radiative effects of the heat pipe.
- The construction of a vacuum brazing facility for attaching the carbon based fibers to the heat pipe simulator.
- The use of carbon fibers for the radiator material.
- The fabrication of sample radiator fins.
- The fabrication and testing of several sub-scale test articles.
- The quantitative agreement between modeled and experimental temperature distribution.
Importance of Model

The model is the link between the experiments and the flight radiator. If we can model the experiment accurately, then we can make a quantitative prediction of the performance of a flight radiator.

It is through the model that we transform what is measured (temperature distribution along the sample, areal density, mass, etc) and what we know about the material (emissivity, thermal conductivity, etc.) into a useful measure in a full scale model of radiative power/mass, possibly turndown ratios (very much environment dependent), and anything else used to measure radiator efficiency, keeping four metrics in mind, mass of the radiator, operating temperature, environmental durability, and cost.
Motivation: Farther & Faster Space Exploration
Objectives

NASA’s Objective: Increase efficiency and capabilities of deep-space travel

Improved Propulsion: Increase power-to-mass & speed

“Radiator advancement is perhaps the most critical thermal technology development for future spacecraft and space-based systems.” -NASA

Promising Propulsion Option: Nuclear-Electric Propulsion (NEP)

Required Technology for NEP: Improved Heat Rejection

Potential Propulsion Energy Sources

- Chemical (H2-O2): \(3.6 \times 10^3\)
- Free Radical (H+H2): \(5.3 \times 10^4\)
- Shaped Isomers (H176): \(3.2 \times 10^8\)
- Nuclear Fission (U235): \(2.0 \times 10^{10}\)
- Nuclear Fusion (D-D): \(2.1 \times 10^{10}\)
- Antimatter (P-P): \(2.2 \times 10^{13}\)

Height difference: 7 OOM

Equation: \(H_2 + O_2 \times 50 = U^{235}\)

Thruster Comparison

<table>
<thead>
<tr>
<th>Thruster</th>
<th>Specific Impulse (s)</th>
<th>Input Power (kW)</th>
<th>Efficiency Range (%)</th>
<th>Propellant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(monopropellant)</td>
<td>150–225</td>
<td>—</td>
<td>—</td>
<td>N₂H₄, H₂O₂</td>
</tr>
<tr>
<td>Chemical</td>
<td>300–450</td>
<td>—</td>
<td>—</td>
<td>Various</td>
</tr>
<tr>
<td>(bipropellant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistojet</td>
<td>300</td>
<td>0.5–1</td>
<td>65–90</td>
<td>N₂H₄ monoprop</td>
</tr>
<tr>
<td>Arcjet</td>
<td>500–600</td>
<td>0.9–2.2</td>
<td>25–45</td>
<td>N₂H₄ monoprop</td>
</tr>
<tr>
<td>Ion thruster</td>
<td>2500–3600</td>
<td>0.4–4.3</td>
<td>40–80</td>
<td>Xenon</td>
</tr>
<tr>
<td>Hall thrusters</td>
<td>1500–2000</td>
<td>1.5–4.5</td>
<td>35–60</td>
<td>Xenon</td>
</tr>
<tr>
<td>PPTs</td>
<td>850–1200</td>
<td><0.2</td>
<td>7–13</td>
<td>Teflon</td>
</tr>
</tbody>
</table>

\[
I_{sp} = \frac{\text{thrust}}{\text{(time)} \cdot \text{(weight of propellant used)}} = \frac{1}{\text{time}}
\]

Heat Transport System Evolution

- **Pumped (1970’s-1980’s)**
 - Vulnerable: one pipe failure causes system failure
 - High pumping power required

- **Heat Pipe (1990’s-present)**
 - Independent heat pipes decrease vulnerability
 - 2-phase system quickly transports heat far from source
Current Work

Evaluating bare carbon fiber fin material as a high performing alternative to metals and composites
Proposed Carbon Fiber Radiator Fin

- Replace metal and composite fins with carbon fibers bonded directly to heat pipe
- Eliminate matrix & align majority of fibers normal to heat pipe axis for maximizing thermal performance
- Radiation from top and bottom surfaces
Preliminary Tests
Predicting Fiber Mat Emissivity

- Monte Carlo Ray Tracing
 - Uniform close-packed fibers
 - Diffuse incident radiation from top
 - Gray-Diffuse fibers
 - Symmetry boundary conditions on side walls
 - Top and bottom boundaries are perfect absorbers to scattered radiation

- $\alpha = \varepsilon$ for a grey body
Effective Emissivity Results

40 Fibers in the Array, 5000 Rays per Simulation, Fiber Emissivity: top line is 0.9, middle line is 0.8, bottom line is 0.7

Maximum due to multiple scattering within fiber array
Effective emissivity approaches individual fiber emissivity
Fin & Tube Space Radiator Designs Examples

• International Space Station (ISS)
 – Deployable radiator influenced many subsequent designs
 – Implemented, in-use

• Space Power 100kW (SP-100)
 – High-temp, fission power application
 – Designed, not implemented – program ended in 1994

• Jupiter Icy Moon Orbiter (JIMO)
 – NEP application
 – Designed, not implemented – program ended in 2005

• Fission Surface Power (FSP)
 – Fission power application
 – On-going research
ISS Radiators

- Operating temperature 100°C
- Panels:
 - Aluminum facesheets
 - Aluminum honeycomb filler
 - Inconel tubes
 - Emissive ceramic coating
- Pumped ammonia heat transport system
- Scissor deployment mechanism
SP-100 Radiators

- Operating temp. 600°C
- Main fluid loop: NaK
- C-C composite panels
- Heat Pipe:
 - Niobium-Zirconium shell & wick
 - Potassium fluid
JIMO Radiators

- Operating temperature: 100°C
- Main fluid loop: NaK
- Carbon fiber composite panels
- Titanium-water heat pipes
- Scissor deployment
FSP Radiators

- On-going work on nuclear fission energy for Lunar & Martian outposts
- Continuation of JIMO radiators: 100 °C operating temp., carbon-polymer panels, Ti-water heat pipes, emissive coating
- Demonstration panels
Nuclear Fission Reactor

- Core: fuel elements & working fluid
- Nuclear fission chain reaction:
 1. The nucleus of an atom is struck by a neutron and becomes unstable
 2. Nucleus splits apart in an exothermic reaction releasing kinetic energy of fission products, gamma radiation, and free neutrons
 3. The heat is absorbed by surrounding media and the free neutrons initiate subsequent reactions
- Heat of reaction absorbed by working fluid and delivered to the hot-side of the power generator
Space Nuclear Reactors

<table>
<thead>
<tr>
<th></th>
<th>SNAP-10A US</th>
<th>SP-100 US *</th>
<th>Romashka Russia</th>
<th>Bouk Russia</th>
<th>Topaz-1 Russia</th>
<th>Topaz-2 Russia-US</th>
<th>SAFE-400 US *</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWt</td>
<td>45.5</td>
<td>2000</td>
<td>40</td>
<td><100</td>
<td>150</td>
<td>135</td>
<td>400</td>
</tr>
<tr>
<td>kWe</td>
<td>0.65</td>
<td>100</td>
<td>0.8</td>
<td><5</td>
<td>5-10</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>converter</td>
<td>t'electric</td>
<td>t'electric</td>
<td>t'electric</td>
<td>t'electric</td>
<td>t'ionic</td>
<td>t'ionic</td>
<td>t'electric</td>
</tr>
<tr>
<td>fuel</td>
<td>U-ZrH_2</td>
<td>UN</td>
<td>UC_2</td>
<td>U-Mo</td>
<td>UO_2</td>
<td>UO_2</td>
<td>UN</td>
</tr>
<tr>
<td>reactor mass, kg</td>
<td>435</td>
<td>5422</td>
<td>455</td>
<td><390</td>
<td>320</td>
<td>1061</td>
<td>512</td>
</tr>
<tr>
<td>neutron spectrum</td>
<td>thermal</td>
<td>fast</td>
<td>fast</td>
<td>fast</td>
<td>thermal</td>
<td>thermal/epithermal</td>
<td>fast</td>
</tr>
<tr>
<td>control</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
</tr>
<tr>
<td>coolant</td>
<td>NaK</td>
<td>Li</td>
<td>none</td>
<td>NaK</td>
<td>NaK</td>
<td>NaK</td>
<td>Na</td>
</tr>
<tr>
<td>core temp. °C, max</td>
<td>585</td>
<td>1377</td>
<td>1900</td>
<td>?</td>
<td>1600</td>
<td>1900?</td>
<td>1020</td>
</tr>
</tbody>
</table>

*Designed but not implemented

Total No. Vehicles: ~37 Russian & 1 US
Power Generation Options

- **Dynamic**
 - Thermodynamic cycle
 - **Brayton, Stirling**: single-phase
 - Rankine: 2-phase
 - Moderate efficiency (15-30%)
 - Typ. lower-temp.

- **Static**
 - No moving parts
 - Thermoelectric, Thermionic
 - Typ. low power
 - Low efficiency (1-10%)
 - High-temperature

Spacecraft with Electrostatic Propulsion

- Numerous Earth-orbiting satellites (mostly Russian)
- Deep Space 1 (1998, NASA, ion) first interplanetary probe to test EP with solar power
- Hayabusa (2003, JAXA, ion) study near-Earth asteroid
- SMART-1 (2003, ESA, Hall) orbit Moon, ended with controlled collision
- DAWN (2007, NASA, ion) investigate evolution of small planetary bodies
Advanced Radiator Concepts