AeroMACS Interference Simulations for Global Airports

Jeffrey D. Wilson
Rafael D. Apaza
NASA Glenn Research Center

Aeronautical Communications Panel
Second Meeting of the Working Group S
Montreal, Canada
Oct. 23-26, 2012
AeroMACS Interference Issues

- AeroMACS (Aeronautical Mobile Airport Communications System)
 - Airport ground communications for next generation air transportation systems.
 - To be implemented in 5091-5150 MHz frequency band.
 - Must avoid interference with mobile satellite service (MSS) feeder uplinks.
- Interference Modeling
 - Performed with Visualyse Professional software.
 - Simulated configurations of AeroMACS antennas at 6207 worldwide airports.
 - Calculated resulting aggregate power at low earth orbit.
 - Determined limits on AeroMACS transmissions from airports so that the threshold of interference into MSS is not exceeded.
Interference Analysis Modeling

Modeling Procedure with Visualyse Professional:
1. Define antenna gain profiles.
2. Locate transmitters and receivers.
3. Specify bandwidth and frequency of carriers.
4. Set up propagation environment (basic transmission loss in free space, ITU-R P525).
5. Assign transmitter power.
6. Define links between transmitters and receivers.
7. Specify output desired, run, and analyze results.
AeroMACS Antenna Gain Profile

- 120° beamwidth sector antenna (ITU-R F.1336-2)
- Similar results with 80° beamwidth antenna used in Cleveland testbed experiments

(Figure from Håkegård, “Compatibility Study in the AeroMACS Frequency Band,” 2011 IEEE ICNS)
Antenna Transmission

- AeroMACS antennas transmit over 5-MHz channels.
 - Consider channel centered at 5100 MHz.
 - One of 11 channels available over 5091-5150 MHz band.
- Cumulative interference power calculated at LEO (1400 km).
- Determine ‘hot spot’ where aggregate interference power a maximum.
- Adjust transmitted power so that ‘hot spot’ is at threshold interference power.
- Threshold interference power = -157.3 dBW: corresponds to 2% increase of MSS satellite receiver’s noise temperature.
Worldwide Airport Database

- OpenFlights Airport Database (openflights.org/data.html)
- Used 6207 airports
 - Large Airports: 35 (USA) + 50 (Europe)
 - Medium Airports: 123 (USA) + 50 (Europe)
 - Small Airports: 1366 (North America) + 1249 (Europe) + 3336 (Rest of World)
Aggregate Interference Power at LEO

- Sample aggregate interference power distribution at 1400 km altitude
- Hot spot (red) generally occurs over Northern Atlantic
Scenario A Assumptions

- All airports use 120° beamwidth sector antennas (ITU-R F.1336-2) with 100% duty.
- No inter-channel interference.
- All of 85 large airports in U.S.A and Europe use 6 sector antennas on each of the 11 available channels.
- 173 medium airports in U.S.A. and Europe use 3 sector antennas on each of 6 channels. Thus 6/11 x 173 = 95 medium airports are operating on any given channel.
- 5951 small airports worldwide use 1 sector antenna on just 1 channel. Thus 1/11 x 5951 = 541 small airports are operating on any given channel.
Scenario A Results

- Randomly turned off 6/11 medium airports and 10/11 small airports to simulate interference for a single channel.
- Three runs with different random antenna directions
- Allowable transmitted power so that ‘hot spot’ is at threshold interference power:
 - 279.5 mW, 283.8 mW, 288.9 mW allowed per sector.
 - Large airports can transmit $275 \times 6 = 1650$ mW on each of 11 channels.
 - Medium airports can transmit $275 \times 3 = 825$ mW on each of 6 channels.
 - Small airports can transmit $275 \times 1 = 275$ mW on one channel.
Scenario B

- Same as Scenario A except small airports sectors can transmit only half as much power.
- Allowable transmitted power so that ‘hot spot’ is at threshold interference power:
 - 303.9 mW, 313.3 mW, 317.2 mW allowed per sector.
 - Large airports can transmit $300 \times 6 = 1800$ mW on each of 11 channels.
 - Medium airports can transmit $300 \times 3 = 900$ mW on each of 6 channels.
 - Small airports can transmit $300 \times \frac{1}{2} = 150$ mW on one channel.
Conclusions

• Ran 18 scenarios with Visualyse Professional interference software (presented 2 most realistic scenarios).
• Scenario A:
 • 85 large airports can transmit 1650 mW on each of 11 channels.
 • 173 medium airports can transmit 825 mW on each of 6 channels.
 • 5951 small airports can transmit 275 mW on one channel.
• Reducing power allowed for small airports in Scenario B increases allowable power for large and medium airports, but should not be necessary as Scenario A levels are more than adequate.
• These power limitations are conservative because we are assuming worst case with 100% duty.