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ABSTRACT 

Electrolytic capacitors are used in several applications rang­
ing from power supplies for safety critical avionics equipment 
to power drivers for electro-mechanical actuator. Past expe­
riences show that capacitors tend to degrade and fail faster 
when subjected to high electrical or thermal stress condi­
tions during operations. Thi s makes them good candidates for 
prognostics and health management. Model-based prognos­
tics captures system knowledge in the form of physics-based 
models of components in order to obtain accurate predictions 
of end of life based on their current state of heal th and their 
anticipated future use and operational conditions. The focus 
of this paper is on deriving first principles degradation mod­
els for thermal stress conditions and implementing Bayesian 
framework for making remaining useful life predictions. Data 
collected from simultaneous experiments are used to validate 
the models. Our overall goal is to derive accurate models of 
capacitor degradation , and use them to remaining useful life 
in DC-DC converters. 

1. INTRODUCTION 

Avionics systems playa critical role in many aspects of ai r­
craft flight control. As the system complexity and fli ght crit­
icality of function s performed by these systems increases, 
the related consequences of in-flight malfunctions are bound 
to increase. Thi s drives the need for Integrated Vehicle 
Health Management (IVHM) technologies for flight-critical 
avionics . Studying and analyzing the performance degrada­
tion of embedded electronics in the aircraft domain is abso-
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lutely necessary to increase aircraft reliability, assure in-flight 
performance, and reduce maintenance costs, (J. R. Celaya, 
Wysocki, Vashchenko, Saha, & Goebel , 2010; Ferrell, 1999). 
In addition to this, an understanding of the beh avior of de­
teriorated components is needed as well as the capability to 
anticipate failures and predict the remaining useful life (RUL) 
of the electronic systems. 

An avionics system module consists of hardware (power sup­
ply, Global positioning system (GPS) receiver, Intertial mea­
surement unit (IMU)) and software (GPS software, INAV - in­
tegrated navigati on solution) components (Kulkarni, Biswas, 
Bharadwaj , & Kim, 2010). Switched-mode power suppli es 
are widely used in DC-DC converters because of their high 
efficiency and compact size. Buck-boost DC-DC converter 
steps voltage levels up/down based on the application re­
quirements, in which electrolytic capacitors and metal ox­
ide semiconductor Jjeld effect transistor (MOSFET) switches 
are known to have the highest degradation and failure rates 
among all of the components (Goodman, 2005). Degraded 
capacitor affect the perfOlmance and efficiency of the DC­
DC converters in a significant manner and also impose a risk 
on instantiating cascading fai lures on other connected subsys­
tems. 

In thi s paper we develop an effective prognostics and health 
management (PHM) methodology that applies to electronic 
systems and components. In particular, we develop a method­
ology to enable early detection offailure precursors in capaci­
tor elements associated with DC-DC power supplies. Our ap­
proach combines physics-based modeling supported by em­
pirical experimental analysis for improving the degradation 
models, and then implementing bayseain framework to pre­
dict remaining useful life of electrolytic capacitors. Our hy-
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pothesis is that early detection will lead to better prediction 
and end of life estimates by tracking and modeling the degra­
dation process. 

The structure of the paper is as follows. Section II dis­
cusses the prognostics metholdology implemented for this 
work. Section ill presents introduction to electrolytic capaci­
tors and its basic structure, operation and degradation mech­
anisms. Section IV discusses capacitor first principle models 
in detail. Section V describes the thern1al stress aging exper­
iments conducted for this work. Section VI and VII presents 
the prognostic framework methodology and RUL results re­
spectively. The paper ends with discussion and conclusion in 
section Vill. 

2. P ROGNOSTIC METHODOLOG Y 

Prognostics is the process of predicting heal th condition and 
remaining useful life based on current and previous state, cur­
rent and future operating conditions. Prognostics and health 
management (PHM) methods combine sensing, data collec­
tion, interpretation of environmental , operational , and perfor­
mance related parameters to indicate systems health as well 
as anticipate damage propagation due to degradation. PHM 
methodologies can be implemented through the use of var­
ious techniques that study parameter variations, wbich indi­
cate changes in performance degradation based on usage du­
ration and conditions. 

Prognostics i an essential technology for improving system 
safety, reli ability, and availability. Prognostics deals wi th de­
termining the health state of components, and projecting its 
health evolution into the future to make end of life (EOL) 
and remainjng useful life (RUL) estimations. Model-based 
prognostics approaches perform these tasks with the help of 
first principles based pbysics models that capture knowledge 
about the system, its components, and their fai lures (Daigle 
& Goebel, 2011 ; Saha & Goebel, 2009). 

We adopt an approach wherein we develop detailed physics­
based models of components and systems that include de­
scriptions of how fault parameters evolve in time. The im­
plemented progno tics architecture is as shown in Figure 1. 
We have implemented this approach on empirkal degradation 
models in our earlier work (1. Celaya et al. , 2011a; Kulka­
rni et aI. , 2012). Experimental studies are being conducted 
and first principles based degradation models are being de­
rived using the descriptions mentioned in (Kulkarni , Celaya, 
et ai. , 2011 ; J. Celaya et al ., 2011a; Fife, 2006; MIL-C-62F, 
2008). Identifying the fai lure precursors and developing ac­
curate models of degradation! failure has been the most diffi­
cult problem of our research goal. These models depend on 
known as well as unknown and possibly time-varying wear 
parameters. Early detection and analysis may lead to better 
prediction and end of life estimates of the capacitor by track­
ing and modeling the degradation process. Faults and degra-

dations appear as parameter value changes in the model, and 
this provides the mechanisms for tracking system behavior 
under degraded conditions (1. Celaya et a!., 20Ila, 2011 b). 
The derived state space models are then implemented in a 
Bayesian framework for prognostics. 

RUL EOL Prognostics 

Figure 1. Prognostics Methodology 

In the next section we discuss in brief the basics of elec­
trolytic capacitors, their detailed structure and different 
mechanisms under which the devices degrade. 

3. ELECTROLYTIC CAPACITORS 

An aluminum electrolytic capacitor, as illustrated in Figure 2, 
consists of a cathode aluminum foil, electrolytic paper, elec­
trolyte, and an aluminum oxide layer on the anode foi l sur­
face , which acts as the dielectric. When in contact with the 
electrolyte, the oxide layer possesses an excellent forward di­
rection insulation property (Bengt, 1995). Figure 3 shows a 
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Figure 2. Illustration of an Electrolytic Capacitor 
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detailed view of the cross section of an electrolytic capacitor 
structure. To get higher capacitance values for the same sur­
face area of the anode and cathode foils, the foil is etched by a 
chemical process. Together with magnified effective surface 
area attained by etching the foi l , a high capac itance value is 
obtained in a small volume (Fife, 2006). Since the oxide 
layer has rectifying properties, a capacitor has polarity. If 
both the anode and cathode foils have an oxide layer, the ca­
pacitors would be bipolar. In this work, we analyze non-solid 
aluminum electrolytic capacitors in which the electrolytic pa­
per is impregnated with liquid electrolyte. After etching, the 
plates are anodized by coating them with a thin aluminum ox­
ide layer on the surface of the foil. This layer of aluminum 
oxide acts as the dielectric (insulator) and serves to block the 
fl ow of direct current between the two capacitor plates (Fife, 
2006) . 

AI20 3 -

electrochemical 
oxide 

layer(forrn ing) 

cathode 

el~tched aluminum 
foi l 

~~>'-:h7-_le_a_ka-"ge current 

electrolyte paper 
(spacer) 

AI20 3 - oxide 
layer(natural) 

Figure 3. Capacitor Detail Structure 

Electrolytic capacitor performance is strongly affected by its 
operating conditions, such as voltage, current, freq uency, and 
ambient temperatures. Degradation in the capacitor manifes ts 
an increase in the equivalent series resistance (ESR) and de­
crease iJ1 capacitance (C) , due to deterioration of electrolyte 
quality, decreases in electrolyte volume due to evaporation, 
weakening of the oxide layer, over operating time (Bengt, 
1995; Fife, 2006). The ESR of a capacitor is the sum of 
the resistance due to aluminum oxide, electrolyte, spacer, and 
electrodes (foil , tabbing, leads, and ohmic contacts) (Bengt, 
1995) and capacitance is the ability of a capacitor to store 
charge in an electric field. The health of a capacitor is often 
measured by the values of these two parameters. 

There are certain industry standard thresholds for these pa­
rameter values, if the measurements exceed these thresholds . 
then the component is considered unhealthy, i.e., the compo­
nent has reached its end of life, and should be immediately 
repl aced before further operations (Lahyani, Venet, Grellet, 
& Viverge, 1998). Failures in a capacitor can be one of two 
types: (1) catastrophic fai lures , where there is complete loss 

of functionality due to a short or open circuit, and (2) degrada­
tion failu res, where there is gradual deterioration of capacitor 
due to accumulated damages. 

The fishbone diagram in Figure 6 summarizes the mos t com­
mon set of failure modes for electrolyti c capacitors that have 
been discussed in (1. Celaya et al., 2011 a; Kulkarni et aI. , 
2012). This diagram identifies the relationship between root 
causes and fai lure modes observed in electrolytic capacitors. 
These root causes can occur individually or combined man­
ner in a capacitor depending upon the conditions of operation. 
Our focus in this work is on the thermal stressors that govern 
the capacitor degradation, specifically, we study high temper­
ature scenarios and their effects on the electrolytic capacitor 
degradation. 

3.1. Equivalent Electrical Circuits 

A simplified electrical lumped parameter model of 
impedance, M I , defined for an electrolytic capacitor is 
shown in Figure 4. The ESR dissipates some of the stored 
energy in the capacitor. An ideal capacitor would offer no 
resistance to the flow of current at its leads. 

Figure 4. Lumped Parameter Model (MI ) 

It has been observed that under thermal overstress storage 
conditions (Bengt, 1995; 1. Celaya et aI., 2011a), the capac­
itance (C) and ESR value depends of the electrolyte resis­
tance RE . A more detai led lumped parameter model derived 
for an electrolytic capacitor under thennal overstress condi­
tion, M 2 can be modified from M 1, as shown in Figure 5. RI 
is the combined series and parallel resistances in the model. 
RE is the electrolyte resistance. The combined resistance of 
Rl and RE is the ESR of the capacitor. C is the total capac­
itance of the capacitor as discussed earlier. 

ESR 

t 

Figure 5. Lumped Parameter Model (M2 ) 

4. PHYSI CS B ASED MODELING 

In this section we discuss about deriving the firs t principles 
based degradati on models for capacitors under thermal over­
stress conditions. Under thennal overstress conditions since 
the device was subjected to only high temperature with no 
charge applied we observe degradation only due to electrolyte 
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Figure 6. Fi hbone diagram of fai lure mechanisms in aluminum electrolytic capacitor 

evaporation. The degradation models are derived based on 
the underlying physics of operation and measurements from 
experimental data. 

4.1. Structural Model 

Figure 7. Capacitor open structure 

For deriving the physics based models of an electrolytic 
capacitor it is also necessary to know about the structural 
and manufacturing details, since health estimations are done 
based on the type of electrolyte, volume of electrolyte, oxide 
layer thickness etc. The models defined use this information 
for making effective degradation/failure predictions. A de­
tail structural study of the electrolytic capacitor under test is 
discussed in thi s section . 

The approximate electrolyte volume, Ve based on all the other 
known structural details of the capacitor can expressed as: 

During modeling it is not possible to know the exact amount 
of electrolyte present in a capacitor. But using information 
from the structural detai ls as shown in Figure 7, we can ap­
proximately calculate the amount of electrolyte present. A 
very highly porous separator paper is used which soaks all 
the electrolyte. The paper separator is sandwiched between 
anode and ca thode, each having a thickness ds, dA and de 
respectively (ds ~ dA ~ de) . Based on the type and config u­
ration , the electrolyte volume will vary which can be updated 
in the model parameters. 

The equation for calculating the approximate electrolyte vol­
ume is derived from calculating the total capacitor capsule 
volume, Ve given by : 

where: 
r e = radius of capacitor capsule 
he = height of capacitor capsule 

(1) 

(2) 

4.2. Capacitance Degradation Model 

Exposure to high temperatures, T applied > Tra ted results in 
accelerated aging of capacitors (Kulkarni , Celaya, et al., 
2011; J. Celaya et a\. , 20 ll a; 60068-1 , 1988). Higher 
ambient storage temperature accelerates the rate of elec­
trolyte evaporation leading to degradation of the capaci­
tance (Kulkarni , Celaya, et a1. , 2011 ; Bengt, 1995). The de­
pletion in electrolyte volume, Ve , (Kulkarni, Biswas, et aI. , 
2011 ; Rusdi et al. , 2005) is given by : 

where: 
Vo = initial electrolyte volume 
j eo = evaporation rate (mg min- 1 area- 1) 

We = volume of ethyl glycol molecule 
t = time in hours. 

(3) 

The total lumped capacitance from first principles of electro-
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magneti sm is given by : 

where: 
ER = relative dielectric constant 
EO = permitivity of free space 

(4) 

Thus from Eg. (3) and Eg. (4) we can derive the first princi­
ples capacitance degradation model, M 3 given by : 

M 3 : C(t) = (2EREO) (Vo - Ve(t) ) (5) 
de Jeo t W e 

As discussed earlier, increase in the core temperature evapo­
ra tes the e lectro lyte thus decreasing the electroly te volume 

leading to degradation in capacitance. The resultant de­
crease in the capacitance can be computed using model, M 3 
wherein the decrease in electrolyte volume, eVe) leads to de­
crease in capacitance, (C). 

4.3. Dynamic Models 

The electrolyte volume. Ve can also be calculated and can also 
be expressed as Ve = As.de . Hence the oxide surface area, 
A s can be expressed in terms of electrolyte volume, Ve and 
oxide thickness, de as: 

(6) 

From Eg. (4) and Eg . (6), dynamic capacitor degradation 
model can be updated as : 

Ck = C::EO ) (V~~) ) (7) 

From Eq. (3) the first order discrete approximation for Change 
in electrolyte volume can be expressed as: 

dYe . 
Tt = - (we A sJeo) , 

dVe 
Ve(k+I) = Ve(k) + Tt 6.t, 

(8) 

Ve(k+l) = Ve(k) - (WeA sj eo) 6.t. 

From Eg. (7) we have, 

(9) 

where: 

From Eg. (9) we can express Eg. (8) as : 

dC 
Ck+Ia = Cka + - 6.t , 

dt 
Ck+1 a = Cka - (weA sj eo) 6.t, hence 

C - C (weA sj eo ) At k+1 - k - L..:. • 

a 

(1 0) 

The complete discrete time dynamic model for capacitance 
degradation can be summarized as : 

M . C - C (2EREOWeA sj eo ) A 
4 · k+1 - k - 2 D t ( 11 ) 

de 

Model M 4 , in Eg. (11 ) is implemented in a Bayesian track­
ing framework. In this work we are implementing a un­
scented Kalman filter (UKF) since the degradation in capac­
itance (state) due to decrease in electrolyte is considered to 
be a dynamic linear model and the evaporation rate (jeo ) pa­
rameter, assumed to be varying and estimated online. Next 
we discuss the implementation of the Bayes ian framework 
methodology for prognostics (Saha & Goebel, 2009; Daigle 
et aI. , 201 2; Daigle & Goebel, 2011 ). 

5. U SCE NTED K ALMA FILTER 

Estimation in nonlinear system is very important because 
many practical systems involve nonlinearities in their oper­
ation through One form or another. Estimation of the state 
accurately of such non-linear system is very important to di­
agnostics and be further implemented to prognostic appli­
cations which is extremely difficult. The Extended Kalman 
Filter (EKF) which applies the KF to nonlinear system by 
linearizing all nonlinear models, has become a most widely 
used method for estimation of nonlinear system. Although 
the EKF maintains is computationally efficient recursive up­
date form of the KF for non-linear systems, it suffers a num­
ber of serious limitations (Julier & Uhlman n, 1997,2004). 

1. Only reliable if the error propagation to the future states 
can be approximated by a linear function. 

2. Linearization can be applied only if the Jacobian matrix 
exists i. e, cannot be implemented if the system has dis­
conti nuities. 

3. Calcul ating Jacobian matrices can be a very difficult and 
error-prone process. 

The Unscented Kalman Filter (UKF) was proposed by (Julier 
& Uhlmann , 1997, 2004) to overcome these problems in non­
linear sys tems. The unscented Kalman filter, instead of ap­
proximating the nonlinearity, approximates the state distribu­
tion (Julier & Uhlmann, 1997, 2004). This procedure main­
tains the nonlinear functions exactly, eliminating the need to 
calculate Jacobian 's, and thereby providing an easier imple­
mentation framework. In this section we will l ook in the 
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detail framework of UKF which has been implemented for 
prognostics in this work. 

A nonlinear system, described by the difference equation and 
the observation model with additive noise is given as : 

Xk = F [Xk - l , Uk-I, k] + Wk- I 

zk = H [Xk ' k] + Vk 
(12) 

where x( k) is the n-dimensional state of the system at time 
step k, u( k) is the input vector, w( k) is the process noise, 
Q, z(k) is the observation vector and V k is the measurement 
noise, R. 

To solve the problem of predicting the future state or obser­
vation based on the Unscented transform (UT), UT takes a 
random variable x , with mean x and covariance P xx , which 
is related to a second random variable y by a nonlinear func­
tion y = f( x ). A small set of points (sigma points) with 
mean y and covariance P xx are selected (Julier & Uhlmann, 
1997), which are deterministically selected and weighted to 
exhibit properties to match the mean and covarinace of the 
original di stribution. A non-linear transformation is applied 
to each point to get the transformed points, statistics of the 
transformed points is then calculated to estimate the mean 
and covariance of the transformed points. The sigma point 
weights do not directly represent probabilities of the sigma 
points, and hence do not have to lie in the interval [0, 1). The 
weights liVi can be positive or negative, but need to obey the 
following conditon to provide an unbiased estiamte. 

(13) 

Each sigma point is instantiated through the func tion(f) to 
obtain new set of sigma points y. 

(14) 

The mean of the transformed points is given by: 

(15) 

The covariance of the transfom1ed points is given by: 

The basic idea of the unscented transform is that it is eas­
ier to apporximate a probability distribution x than it is to 
approximate an arbitary nonlinear function f or transforma­
tion (Julier & Uhlmann, 2004). This basic principle is imple­
mented in tbe unscented Kalman filter where the unscented 
transform is exploited for nonlinear state estimation (Julier & 

Uhlmann, 1997, 2004). At each step, the unscented trans­
form is applied to the state estimate and is used for a si ngle 
step prediction. In contrast, here, we apply the transform to 
the state parameter di stribution at given single time point k p 

, and use this for multi-step predictions to EOL. There are 
several methods which exits for selecting the sigma points 
out of which we implement the symmetric unscented trans­
form for the prognosis problem (Daigle et a!., 2012; Julier & 
Uhlmann, 2004). Detailed results will be presented in Section 
6 for capacitor degradation problem. 

In the symmetric unscented transform, 2nx + 1 sigma points 
are selected symmetrically about the mean as follows (Julier 
& Uhlmann, 2004): 

Xo =x 

where J ((n + k )Pxx)i refers to the ith column of the ma­
trix square root of (n + k)Pxx , computed using the Cholesky 
decomposition since it is numerically efficient and stable. Pa­
rameter k is used to tune the higher moments of distribution 
and suggested to have a smaller values as possible to bring the 
sigma points closer together. If x is assumed Gaussian, then 
selecting n + k = 3 is recommended (Julier and Uhlmann, 
1997). 

6. THERMAL OVERSTRE S EXPERIMENT 

In this setup we emulated conditions similar to high tempera­
ture storage conditions (Kulkarni, Celaya, et a!., 2011; Kulka­
rni, Biswas, et aJ. , 2011), where capacitors were placed in 
a controlled chamber and the temperature raised above their 
rated specification (60068- 1, 1988). Pristine capacitors were 
taken from the same lot rated for lOY and maximum storage 
temperature rating of 85°C. 

Experiments were conducted with 2200 p,F capacitors with 
TOS temperature at 105°C and humidity factor at 3.4%. 
The chamber temperature was gradual ly increased in steps of 
25°C till the pre-determined temperature limit was reached. 
The capacitors were allowed to settle at a set temperature for 
15 min and then the next step increase was applied. This 
process was continued till the required temperature limit was 
attained. To decrease possibility of shocks due to sudden de-
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crease in the temperature the above procedure was followed. 
At the end of specific time interval the temperature was low­
ered in steps of 25°C till the required room temperature was 
reached. 

Before being characterized the capacitors were kept at room 
temperature for 15 min. The ESR value is the real impedance 
measured through the terminal software of the instrument. 
Similarly the capacitance value is computed from the imag­
inary impedance using Electrochemical Impedance Spec­
troscopy (EIS). Characterization of all the capacitors was 
done for measuring the impedance values using an SP-
150 Biologic impedance measurement instrument (Biologic, 
2010) . Figure 8 shows the plots decrease in capacitance due 
to accelerated aging for all the 15 capacitors under test at dif­
ferent aging times. 

1650 

Capacitance VS . Time for 2200uF @ 105C 
· x · Cap1 

. "v " C~p2 
o c.p3 

c .... 
"'0 " c.p5 

· v · C~p6 
)( ~p7 

· 0 ' c.pI 
"'D ,. Capt 

a Cap10 

1600 ~------~--------~------~----~ 

o 1000 2000 3000 
Time (hrs) 

Figure 8. Capacitance Plot for all the devices under TOS 

In the thermal overstress experiments, the capacitors we char­
acterized periodically and after 3400 hours of operation it was 
observed that the average capacitance (C) value decreased by 
more than 9-11 % while decrease in ESR value was observed 
around 20 - 22%. From literature (60068-1, 1988) under ther­
mal overstress conditons higher capaitance degradation is ob­
served and minor degradation in ESR which correlated with 
the data collected. The failure thresholds under storage condi­
tions for capacitance (C) is 10% while that for ES R is around 
280- 300% of the pristene condition values (60384-4-1 , 2007; 
Kulkarni , Celaya, et al. , 2011). Hence the capacitance degra­
dation data was used as a precursor to failure parameter to 
estimate the current health condition of the device. 

7. PREDI CTION OF R EMA INING USEFUL LIFE R ESULTS 

State estimation and RUL estimation results are discussed for 
capacitor Cap # 5 out of a batch of 15 available capacitors 
under test. Figure 9 shows the result of filter tracking for 
degradation in capacitance upto 3200 hours of aging time. 

Cap #5 
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.:; 1.9 .... fihc r data 

1.6 
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Aging Tina ( Hours) 

I 
x IO-s Output Error - Cap #S 
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-"- " ;; - I " "X 
~ " .XI( lC 
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" U 
-3 
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Figure 9. (a) Tracking fi lter output agains t measurement data, 
(b) Output error for Cap # 5 

Figure 10 presents results from the remaining useful life pre­
diction algorithm at different aging times tp = 87, 607, 
1495, 2131,2800 (hrs), at which the capacitors are charac­
terized and their capacitance (C) value is calculated. The 
failure threshold is considered to be 10% decrease in ca­
pacitance value, which in this case is at 3200 hours of ag­
ing time. End of life (EOL) is defined as the time at which 
the forecasted capacitance value trajectory crosses the EOL 
threshold. Therefore, RUL is EOL minus aging times tp = 
87.5, 607, 1495, 2131 , 2800 (hrs). 

Jt IO-J / . ·0 ·· Measured --- Predicloo I 
2 f t ... 87 
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Figure 10. Capacitance decrease prediction at different Aging 
Time for Cap # 5 
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An a -A prognostics performance metric (Saxena et a1. , 2009, 
2008) is presented in Figure 11 for test case of Cap #5. The 
central dashed line represents ground truth and the shaded 
region is corresponding to a 30% (a = 0.3) error bound in the 
RUL prediction. Performance metric identifies whether the 
algorithm performs within desired error margins (specified by 
the parameter a ) of the actual RUL at any given time instant 
(specified by the parameter A) (Saxena et aI., 2009) and is 
based on relative accuracy (RA) metric in Eq. (18). 

RA = 100 (1- RUL* - RULI ) (18) 
RUL* 

Table 1 shows the performance summary based on the RA of 
all the capacitors under thermal stress performance. These 
metrics allows for an assessment of the percentage accuracy 
relative to the ground-truth value. RA values of 100 represent 
perfect accuracy. The RA is presented for all the test cases 
for different prediction times. The last column of Table 1 
represents the median RA of all the test cases for a particular 
prediction time. It must be noted that if the prediction error 
magnitude grows beyond 100% RA gives a negative value. 
We do not consider such cases since these cases would not 
have qualify the tests for calculating RA (Saxena et a!. , 2009), 
these are indicated by NA in Table 1. 

From the a -A metric plot in Figure 11 it can be observed that 
the relative accuracy is not as good at the end but the accuracy 
is good enough under acceptable limits. This is due to the 
non-linearity observed in the data at the end of the aging time 
and the limitation of the model due to not including the oxide 
layer breakdown. The residuals show an increased error with 
aging time, since the breakdown in the oxide layer observed 
due to stress is not considered for this model which starts 
to dominate in the later stages of aging of the device. This 
breakdown is exponential in nature and as we can observe a 
dip in the capacitance values from the linear path in the later 
stages. 

8, CONCLUS ION AND DISC USSION 

This paper presents a first principles based degradation elec­
trolytic capacitor model and an parameter estimation algo­
rithm to validate the derived model , based on the experimen­
tal data. The majors contributions of the work presented in 
thi s paper are: 

1. Development of the first principles degradation model 
based on accelerated life test aging data which includes 
decrease in capacitance as a function of time and evapo­
ration rate linked to temperature conditions; 

2. Implementation of a Bayesian based health state track­
ing and remaining useful life prediction (RUL) algorithm 
based on the UKF filtering framework; 

3. Prediction of remaining useful life for capacitors based 
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Figure 11 . Performance based on Alpha-Lambda metric for 
Cap#5 

fir t principles degradation model, M 3 ; 

The degradation model, M 3 based on the first principles 
gives an indication of how a specific device degrades based 
on its structure, materi al properties, operating conditions, etc. 
The results presented here are based on accelerated aging ex­
perimental data and on the accelerated life timescale. In our 
earlier work we studied the degradation models based on the 
observed data, and the work discussed here is a next step to 
generalize the model. Though as discussed in section 4, as a 
fi rst step a dynamic linear model bas been implemented for 
degradation model. This degradation model for decrease in 
capacitance, C and varying evaporation rate j eo needs to be 
updated and include the model of break-down in the oxide 
layer which is exponential in nature and dominates in the 
later stages of aging. Further research will focus on devel­
opment of fW1ctional mappings that will translate the acceler­
ated life timescale into real usage conditions timescale, where 
the degradation process dynamics will be slower, and sub­
jected to varying stress conditions. 

The performance of the proposed first principles degradation 
model, M 3 is acceptable for the current study based on the 
quality of tbe model fit to the experimental data and the RUL 
prediction performance from a -A metric plot. Additional ex­
periments are currently underway to increase the number of 
test samples. This will greatly enhance the quality of the 
model, and guide the exploration of additional degradation­
models , where the loading conditions and the environmen­
tal conditions are also accounted for towards degradation dy­
namics. 
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NOMENCLATURE 

ER relative dielectric constant 
EO pennitivity of free space 
Vo initial electrolyte volume 
j eo evaporation rate (mg min- 1 area- I) 
PE electrolyte resistivity 
As effective oxide surface area 
W e volume of ethyl glycol molecule 
dA truckness of anode strip, 
de truckness of cathode strip 
ds truckness of paper spacer 
M 1 electrical lumped parameter model 
M2 updated lumped parameter model 
M 3 capacitance degradation model 
M4 capaci tance discrete time model 
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AgingTIffiei C l C2 C3 C4 C5 C6 C7 C8 C9 Cl 0 C ll Cl 2 C13 c14 CIS RA" 
HS L6) Y~U4 Y5.Uj 10U.UU Y~U4 Y~U4 Y~U4 Y~U4 
295.38 98.28 94.84 98.28 100.00 100.00 98.28 98.28 
384.47 98.22 94.67 100.00 100.00 98.22 98.22 98.22 
450.93 98. 18 94.54 98. 18 100.00 lOO.OO l OO.OO 98 .1 8 
540.77 98.l2 94.36 100.00 100.00 100.00 98. 12 98. 12 
607.07 98.07 94.22 98.07 100.00 100.00 100.00 98.07 
701.62 98.00 94.00 98.00 100.00 100.00 100.00 98.00 
766.83 97.95 91.78 97.95 100.00 lOO.OO 100.00 100.00 
860.43 97.86 93.59 97.86 100.00 100.00 100.00 97.86 
950.07 97.78 93.33 97.78 100.00 100.00 100.00 97.78 
1019 100.00 90.83 97.71 100.00 100.00 100.00 100.00 

1084.47 97.64 92.91 100.00 100.00 100.00 100.00 97.64 
1179.5 97.53 92.58 100.00 100.00 100.00 100.00 97.53 

1244.82 97.44 92.33 100.00 100.00 100.00 100.00 97.44 
1338.18 97.31 9 1. 94 100.00 100.00 100.00 100.00 97.31 
1404.48 97.22 91.65 100.00 100.00 100.00 97.22 100.00 
1495.4 97.07 91.20 100.00 lOO.OO 100.00 97.07 97.07 

1560.48 96.95 90.85 100.00 100.00 100.00 96.95 100.00 
1626.53 96.82 93.64 96.82 100.00 100.00 96.82 96.82 
1716.57 96.63 89.89 100.00 100.00 96.63 93.26 100.00 
1807.02 96.4 1 89.23 96.4 1 100.00 100.00 92.82 100.00 
1871.62 96.24 88.7 1 96.24 100.00 96.24 92.47 100.00 
2036.88 91.40 91.40 9 1.40 100.00 100.00 9 1.40 95.70 
2 131 .35 90.64 95.32 90.64 95.32 100.00 90.64 95.32 
2196. 1 90.04 9502 90.04 100.00 100.00 90.04 95.02 

2290.12 83.5 1 94.50 83.5 1 94.50 100.00 89.0 1 94.50 
2355.97 82.23 94.08 82.23 94.08 100.00 82.23 94.08 
2421.92 80.72 100.00 80.72 100.00 93.57 74.30 100.00 

2500 71.43 100.00 7 1.43 92.86 100.00 7 1.43 92.86 
2650 54.55 90.91 54.55 90.91 100.00 63.64 90.9 1 
2800 37.50 75.00 37.50 75.00 100.00 37.50 87.50 
3000 NA 25.00 NA 50.00 100.00 0.00 75.00 

RAb 87. 13 90.78 87.99 96.60 99.39 89.29 94.45 

Table 1. Swnmary of RUL fo recasting resul ts 
RAa is the mean relative accuracy of all capacitors at each prediction time Ctp) 
RAb is the mean relative accuracy of each capacitor at aLI prediciton times 

Yj.TI Y~U4 % .6Y Y I Jl YI Jl Y~U4 Y~.j4 

~~:~~ Y6.W 
93 .11 98.28 96.56 93.1 1 91.39 98.28 100.00 97.02 
92.90 98.22 96.45 9 1.12 91.12 98.22 98.22 96.45 96.69 
92.72 98. 18 96.36 92.72 90.91 98. l8 100.00 98. 18 97.09 
92.48 98. l2 96.24 92.48 90.60 98. 12 100.00 96.24 96.87 
92.29 98.07 96.14 92.29 90.36 98.07 100.00 9807 96.91 
9l.99 9800 96.00 9 1.99 89.99 98.00 100.00 98.00 96.80 
93 .84 97.95 93.84 91.78 89.73 97.95 100.00 97.95 96.71 
93.59 97.86 95.73 91.45 89.3 1 9786 100.00 97.86 96.72 
93.33 97.78 95.56 9 1.1 1 88.89 97.78 100.00 97.78 96.59 
93 .12 97.71 93. 12 93. 12 88.54 95.41 100.00 97.7 1 96.48 
92.91 97.64 95.27 90.55 90.55 97.64 100.00 97.64 96.69 
92.58 97.53 95.05 90.10 90.10 97.53 100.00 97.53 96.54 
92.33 97.44 94.89 92.33 89.77 97.44 100.00 97.44 96.59 
94.63 97.31 94.63 91.94 89.26 97.3 1 100.00 97.3l 96.60 
94.43 97.22 94.43 9 1.65 88.86 97.22 100.00 97.22 96.47 
94.13 97.07 94.13 91.20 88.27 97.07 100.00 97.07 96.09 
96.95 96.95 90.85 93.90 87.80 96.95 96.95 100.00 96.34 
96.82 100.00 93.64 90.47 90.47 96.82 100.00 96.82 96.40 
100.00 96.63 89.89 93.26 86.52 96.63 96.63 100.00 95.73 
100.00 96.4 1 92.82 96.41 89.23 96.41 96.41 100.00 96. 17 
96.24 96.24 88.7 1 96.24 88.71 96.24 96.24 96.24 94.98 
95.70 100.00 9 1. 40 95.70 91.40 100.00 95.70 100.00 95.41 
95.32 95.32 90.64 95.32 90.64 100.00 95.32 95.32 94.39 
90.04 95.02 90.04 100.00 9502 100.00 95.02 95.02 94.69 
83.5 1 94.50 89.0 1 100.00 94.50 100.00 94.50 94.50 92.67 
82.23 94.08 88. 15 100.00 100.00 ] 00.00 94.08 88. 15 91.71 
74.30 93.57 87. 15 93.57 100.00 100.00 87. 15 87. 15 90. 15 
64.29 85.71 85.7 1 92.86 92.86 92.86 85.7 1 85.71 85.71 
54.55 72.73 90.91 8 1.82 81. 82 90.91 8 1. 82 72.73 78.18 
25.00 62.50 87.50 75.00 62.50 75.00 75.00 62.50 65.00 
NA 0.00 75.00 25.00 NA 50.00 50.00 25.00 43. 18 

85.73 92. 14 92.50 90.32 87 .1 5 95.49 94.97 92.38 
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