
r~---

An Integrated Framework for Model-Based 
Distributed Diagnosis and Prognosis 

Anibal Bregon J, Matthew DaigJe2 , and Indranil Roychoudhuri 

I University of Valladolid, Valladolid, Spain 
anibal@infor.uva.es 

2 NASA Ames Research Center, Moffett Field, CA 94035, USA 
matthew.j.daigle@ nasa.gov 

3 SGT Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA 
indranil.roychoudhury@nasa.gov 

ABSTRACT 

Diagnosis and prognosis are necessary tasks for system re­
con.figuration and fault-adaptive control in complex sys tems. 
Diagnosis consists of detection, isolation and identification of 
faults, while prognosis consists of prediction of the remain­
ing useful life of systems. This paper presents a novel inte­
grated framework for model-based distributed di agnosis and 
prognosis, where system decomposition is used to enable the 
diagnosis and prognosis tasks to be performed in a distributed 
way. We show how different submodels can be automati­
cally constructed to solve the local diagnosis and prognosis 
problems. We illustrate our approach using a simulated four­
wheeled rover for djfferent fault scenarios. Our experiments 
show that our approach correctly performs distributed fault 
diagnosis and prognosis in an efficient and robust manner. 

1. INTROD UCTION 

Systems health monitoring is essential to guaranteeing the 
safe, effiCient, and reliable operation of engineering sys­
tems. Integrated systems health management methodologies 
include fault diagnosis and prognosis mechanisms, where di­
agnosis involves detecting when a fa ult has occuned, isolat­
ing the true fault , and identifying the true damage to the sys­
tem; and prognosis involves predicting how much useful life 
remains in the different components, subsystems, or systems 
given the diagnosed fau lt conditions. The information on the 
fault size and its expected impact on system life can be used 
to initiate recovery and reconfiguration actions tbat mitigate 
the fault or extend system life. 
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A large body of research exists for both model-based di­
agnosis (Gertler, 1998; Blanke et al., 2(06) and prognosis 
methods (Luo et aI. , 2008; Saba & Goebel , 2009; Orchard 
& Vachtsevanos, 2009). However, the integration of diag­
nos is and prognosis algorithms is seldom studied. In fact, 
many diagnosis methodologies leave out the fault identifica­
tion step, which is necessary to perform a prediction from the 
cunent system state. Recently, we presented an integrated 
model-based framework for diagnosis and prognosis of com­
plex systems, in which we made use of a common modeling 
framework for modeling both the nominal and faulty system 
behavior (Roychoudhury & Daigle, 201 1). 

]n (Roychoudhury & Daigle, 2011), the nominal system be­
havior is estimated using an observer built with the nominal 
model. Faults are detected wben a statis tically Significant de­
viation between the nominal estimates and the observed mea­
surements is observed (Biswas et aI. , 2003). Fault isolation 
compares the observed measurement deviations against pre­
dictions of how the measurements wou ld deviate for each 
possible fault. (Mosterman & Biswas , 1999). Fault identifi­
cati on performs joint state-parameter estimation using multi­
ple observers, where, for each fau lt, the fau lty system model 
i constructed as the nominal model integrated with a hy­
pothe ized fault model (Roychoudhury, 2009). The prog­
nosis module uses , for each fault hypothesis, a pred iction 
model based on its faulty sys tem model and the identified 
fault parameters, to predict the remaining useful life of the 
system (Daigle, Saba, & Goebel, 2012). However, thi s inte­
grated solution performs the diagnosis and prognosis task in a 
centralized fashion , which is prone to single points of failure, 
and does not scale well as the size of the system increases. 

To overcome such problems, in thi s work, we leverage re­
cent resu lts for distributed diagnosis (Bregon et a1., 201 1) 
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and distributed prognosis (Daigle, Bregon, & Roychoud­
hury, 2012), which make use of structural model decompo­
sition techniques, to provide a systematic approach to dis­
tributing the different diagnosis and prognosis steps presented 
in (Roychoudhury & Daigle, 20 l l) . 

Distributed diagnosis is achieved by designing l ocal dis­
tributed subsystems based on global diagnosabili ty analysis 
of the system, thus computing globally correct distributed 
diagnosis results without the use of a centralized coordina­
tor (Bregon et al. , 2011 ). These local distributed subsystems 
are then used to construct local event-based distributed diag­
nosers for distributed fault isolation. Distributed fault iden­
tification is achieved by developing independent local state­
parameter estimators for each hypothesized fault. Regarding 
di sttibuted prediction, in (Daigle, Bregon, & Roychoudhury, 
2012) we developed an arcltitecture that enables a large prog­
nosis problem to be decomposed into several independent lo­
cal subproblems from which local results can be merged into 
a global result. 

The main contlibution of this paper is an integrated frame­
work for distributed model-based diagnosis and prognosis of 
single faults based on structural model decomposition. The 
proposed framework scales well and the resulting subprob­
lems are typically small and easy to solve, resul ting in an ef­
fi cient and scalable distributed solution to the combined diag­
nosis and prognosis problem. We perform a number of exper­
iments on a simulated four-wheeled rover testbed (Balaban et 
al. , 2011 ) to demonstrate and evaluate our approach. 

The rest of the paper is organized as fo llows. Section 2 pro­
vides the problem fOlIDulation for our diagnosis and progno­
sis framework. Section 3 describes the distributed arcltitec­
ture and Section 4 briefl y introduces its different components. 
Secti on 5 presents the case study and experimental results. 
Finally, Section 6 concludes the paper. 

2. PROBLEM FORMULATIO N 

The nominal system model is represen ted as follows: 

x(t) = f (t, x(t) , B(t), u(t), vet)), 

yet) = h(t ,x(t) , B(t) , u(t) , n et)), 

where x(t) E IRnz is the state vector, B(t) E IRno is the 
parameter vector, u(t) E IRn " is the input vector, v et) E IRnv 

is the process noise vector, f is the state equation, yet) E IRny 

is the output vector, n et) E IRn ,.. is the measuremen t noise 
vector, and h is the output equation. I 

Fault in the system are represented as changes in the above 
nominal system model. In this work, we only consider sin­
gle faults occurring as changes in system parameters, B(t). 
We denote a fault, .f E F, as a tuple, (e, 9J), where, e E () 

1 Here, we use bold typeface to denote vectors, and use n" to denote the 
length of a vector a. 

is the fault parameter, and gJ denotes the fault progression 
f unction, which models the way fault j is manifes ted in pa­
rameter e, i.e., 

e(t) = gJ(t ,xJ(t) ,BJ(t), u(t), mJ(t)), 

where xJ(t) = [x(t), e(t)]T, BJ(t) = [B(t)\{e(t)}, 
<P J (t) jT, <P J (t) E IR

n
4> J is a vector of f ault progression pa­

rameters, and mJ(t) E IRn"'J is a process noise vector asso­
ciated with the fault progression function. 

To develop our integrated diagnosis and prognosis frame­
work, the faulty system model for fault j = (e, 9J) is con­
structed from the nominal system model by including the pa­
rameter as a state and augmenting the state equation by in­
cluding the fault progression function, i.e., 

where, 

Xf(t) = ff(t,xf(t), Bf(t), u (t) , v et)), 

yet) = h (t, x (t), B(t), u (t), net)), 

[ 
f (t, x(t), B(t), u (t), v et)) ] _ [ x (t) ] 

fJC) = gJ(t , xJ(t) , B J(t) , u (t), met)) - e(t) 

The goal of diagnosis is to: (i) detect a change in some e E B; 
(ii) isolate, under the single fa ult assumption, the true fault 
j E F, i.e., both the parameter e that has changed, and its 
fault progression fu nction 9J; and (iii) identify (i.e. estimate) 
the fault by computing p(xJ(t) , B J (t) ly(O: t)), where y(O: t) 
denotes all measurements observed up to time t. 

The goal of prognosis is to determine the end of (use­
ful) life (EOL) of a sys tem, and/or its remaini ng useful 
life (RUL). For a given fault, j, using the fault esti mate, 
p(xJ(t) ,BJ(t)ly(O:t)), a probability distri bution of EOL, 
p(EOLJ (tp )ly(O: tp )), and/or RUL, p(RULJ(tp )ly(O: tp)) 
is computed at a given ti me point tp (Daigle, Saha, & 
Goebel, 2012). Since the prognosis problem is stochas­
tic, EOURUL are random variables and we represent them 
by probability distributions. The acceptable behavior of 
the system is expressed through a set of nc constraints, 
CEOLf = {Cd~~l' where C. : IR

n7
J x IRnof x IRnu ~ lffi 

maps a given point in the joint state-parameter space given 
the current inputs, (xJ(t), BJ(t), u (t)), to the Boolean do­

main lffi ~ [0,1], where c.(xJ(t) , B J(t) , u (t)) = 1 if the 
constraint is satisfied (Daigle, Saba, & Goebel, 2012). If 
c.(xJ(t ), B J(t) u(t)) = 0, then the constraint is not satis­
fied, and the bebavior of the system is deemed to be unac­
ceptable. These individual constrai nts are combined into a 
single thresholdJunction TEOLJ : IRnzJ x IRnof x IRn" ~ lffi, 
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defined as 

TEOLJ (x f(t), 8 f(t), u (t)) = 

{
I , 0 E { Ci (xf(t) ,8f(t) , u(t))} ~~ l 
0, otherwise. 

So, EOL J may be defined as 

EOLf(tp) £ 

inf{t E lR : t 2 tp and TEOL/(Xj(t) , 8f (t) , u (t)) = I} , 

i.e., EOL is the earliest time point at which the threshold is 
reached . RUL i expressed given EOL as 

3. D ISTRIBUTED ARCHITECTURE 

For a large system, both the diagnosis and prognosis prob­
lems are correspondingly large. A centralized approach does 
not scale well , can be computationally expensive, and prone 
to single points of failure. Therefore, we propose to decom­
pose the global integrated diagnosis and prognosis problem 
into independent local subproblems. In thi work, we bui ld 
on the ideas from structural model decomposition (Blanke et 
aI. , 2006; Pulido & Alonso-Gonzalez, 2004) to compute lo­
cal independent subproblems, which may be olved in paral­
lel, thus providing scalability and efficiency. Model decom­
position is not a new concept, and several approaches have 
been developed for purposes of system identification, es tima­
tion , learning, and diagnosi (Staroswiecki & Declerck , 1989; 
Pulido & Alonso-Gonzalez, 2004; Williams & Millar, 1998). 
Structural model decomposition al low decomposing a global 
model into a set of 10caJ ubmodels for which loca l diagnosis 
and prognosis problems can be directly defined. The global 
model of the sy 'tern, denoted as M, is defined as fo ll ows. 

Defin ition 1 (Model). The model of a system, M, is a tuple 
M = (X, G, U, Y , C), where X is the et of state variables 
of x, G is the set of unknown parameters of 8, U i the set of 
input variables of u , Y is the set of output variables of y, and 
C is the set of model constraints of f, h , and EOL constraints 

ofCEoL / . 

The basic idea of the model decomposition problem is to de­
compose the global system model into a set of submodels sat­
isfying given constraints, such that each sub model contains 
sufficient analytical redundancy to generate fault hypotheses 
from observed measurement deviations. A submodel in our 
framework is defined as follows. 

Definition 2 (Submodel). A submodel M i of a system model 
M = (X , G, U, Y , C) is a tuple M i = (Xi, Gi , Ui , Yi , Ci ), 
where X i ~ X , Gi ~ e, Ui ~ X u U u Y , and Yi ~ Yare 
the state, parameter, input, and output variables, respectively, 

and Ci ~ C are the submodel constraints.2 

Next, we discuss the fundamental ideas of our model decom­
position approach and show the constraints needed to obtain 
the different submodel s for distributed di agnosis and progno­
sis. Then, we propose our integrated approach. 

3.1. Model Decomposition for Distributed Diagnosis and 
P rognosis 

Model decomposition in our framework can be accomplished 
by using some variables (either measured variables or vari­
ables for which the values are known) a local input , Ui , such 
that each one of the suhmodels satisfies a set of constraints 
and contains the minimum number of equations to compute 
a given set of outputs , Yi. As a result, submodels computed 
thi s way contain only a small subset of the equations of the 
model that are decoupled from the rest of the system model 
equations. In general , any set of variables in the system can 
be chosen as the local inputs to the submodel, Ui . The choice 
of Ui and tbe constraints to fulfill depends on the particular 
problem to be solved through model decomposi tion . 

The first model decomposition problem computes minimal 
submodels from the nominal system model. For this model 
decomposition problem, constraints are that submodels use 
the global model inputs and some measured values as local 
inputs, i.e., Ui ~ U U (Y - Yi) . An algorithm for comput­
ing the set of minimal submodels that satisfies these prop­
erties is given in (Daigle et aI. , 2011 ), which is based on 
the model decomposition algorithms presented in (Pulido & 
Alonso-Gonzalez, 2004; Bregon et al., 2012). 

The second model decomposition problem computes sub­
models for residual generation and fault isolation. For this 
model decomposition problem, the constraints are that sub­
models are constructed by merging the minimal submodels, 
to fulfill global diagnosability condiLions as in (Bregon et 
aI., 2011).3 Once the globally di agnosable subsystems have 
been de igned, the merged submodels are used for di stributed 
residual generation and to compute event-based local diag­
nosers for fault isolation. The e design and di agno er com­
putation processes are detailed in (Bregon et al. , 2011). Be­
cause the subsystems are designed to be globally di agnosable, 
the re ulting local diagno ers are independent, and can pro­
vide globally correct diagnosis result without a centrali zed 
coordinator. 

The third model decompo ition problem computes submod­
els for distributed fault identification. For each consistent 
fault hypothesis J, the joint tate-parameter estimators are 
computed from the minimal submodels of the faulty system 
model M (f ) with the constraints that Ui ~ Uu (Y - Yi) with 

2A faul ty submodel for a fault f is denoted as M i (J ). 
3In thi s work , a subsystem is globally diagnosab le if a ll fault s in the subsys­
tem are di stinguishable from every other fault in the system using only local 
measurements. 
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Figure 1. An instantiation of the integrated diagnosis and prognosis architecture. 

}Ii as a singleton. It will be shown later that the fault identi­
fication module is the central part of our cliagnosis-prognosis 
integration approach and provides the joint state-parameter 
estimations for the prediction module. 

Finally, for distributed prediction, the model decompo ition 
problem starts off from the faulty system model, and, as de­
tailed in (Daigle, Bregon, & Roychoudhury, 2012), it ful.fills 
the following constraints: (i) the sub models use Ui ~ Up, 
where Up ~ X U U (here, Up is a set of variables whose 
future values can be predicted a priori, which depends on the 
hypothesized faults); and (ii) each computed submodel has 
at least one c E CEOL! belonging to C i , and over all sub­
model s, aU constraints in CEOL! are covered. This ensures 
that TEOL! may be computed for the system from the local 
constraints. 

3.2. Distributed Architecture 

Figure I illustrates an example architecture for our distributed 
diagnosis and prognosis scheme. At each discrete time step, 
k, the system takes as input both U k and Yk and splits them 
into local inputs ut and local outputs yl for the local diag­
nosers . Within each M i local diagnoser, nominal tracking is 
performed, computing estimates of nominal measurements, 
yt. The fault detector compares the estimated measurements 
against the observed measurements, to determine tati stica lly 
significant deviations for the residual, ri = yi - Yi. Qual­
itative values of the deviations in the residuals are used by 
the event-based diagnoser to isolate faul ts. The set of iso­
lated fault candidates F1 together with the estimated nom-

o ~i . 
inal states, xi." paranleters, () k> and the measurements, yi." 
are used as input for the corresponding identifica tion mod­
ule. Identification is performed for each hypothesized fault 
in a distributed way, e.g., for the isolated faults hand 12 in 
Figure 1, we run an instantiation of the identification sub­
model for each one the faults , i.e., M1(h) and M1(h ). 
Fault identification u. es the minimal suhmodels from the 
faulty system model , and computes local state-parameter es-

.. _---- - --

timates P(x~, k' ()~,kIYb:k) ' These local estimates are then 
used as input to the prediction submodels. In some cases, 
the local estimates have to be plit or merged with other 
estimates according to the prediction submodels. For ex­
ample, in the fi gure, estimates from M l (h), are used by 
both local prediction submodels M 4(h) and M 5(fl), and 
those submodels may al 0 need estimates not included within 
sub model M1 (h). These estimates are typica ll y obtained 
from the local diagnosers or other fault identification blocks.4 
Distributed prediction modules compute, for each hypothe­
sized fault, local EOLIRUL predictions, p(EOL~,kp Iyb:kp ) 
and p(RUL~, kpIYb:kp )' at given prediction time k p based 
on the local EOL constraints. FinaJJy, local predicti ons 
are combined into global predictions p(EOL j ,kp IYO:kp) and 
p(RULj,kpIYo:kp) for each hypothesized fault. The next 
section describes the details of the different modules of the 
distributed integrated diagnosis and prognosis architecture. 

4. DIAGNOSIS AND PROG OSIS ApPROACH 

Figure I shows the basic modules of our distributed integrated 
approach. In thi s section we give details on how each mod­
ule is implemented, and establ ish the integration between the 
diagnosi and prognosis ta ks. 

4.1. Distributed Diagnosis 

For clistributed diagnosis, each local diagnoser first lakes a 
subset of the local inpu ts ut and local outputs yt, to compute 
an estimate of its output measurements Sri. Tracki ng is per­
formed in discrete time using a robust fi ltering scheme, e.g., 
the extended or unscented Kalman filter (Julier & Uhlmann, 
2004), which provides accurate tracking in the presence of 
sensor noise, process noise, and discretization error. 

4Si nce prediction sub models are constructed by using any variable which 
value can be hypothesized as input, in some cases, prediction submodels 
cannot always be formed by just merging the min imal estimation submod­
els. To indicate this, we named our prediction submodels differently from 
the estimation submodel s, e.g., M 4(h) and M s(h) instead of M 1 (h)· 

4 
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For fault detection, a statistical test is used to look for signif­
icant deviations in the residual signal r~, which is computed 
as the di fference between y~ and the y~. In our approach, we 
use a Z -test as described in (Biswas et a1. , 2003) . 

Faul t isolation is performed using local event-based di­
agnosers, constructed as detai led in the previous sec­
tion (Bregon et aI. , 2011 ; Daigle et al ., 2009). Fault isolation 
is triggered when a fault is detected, and it works as follows. 
Initially, all event-based local diagnosers start in their initi al 
state, and the set of faulty candidates is empty. Local residual 
deviations cause the local diagnosers to move from one state 
to another. These residual deviations are abstracted to a tu­
ple of qualitative symbols ( CT1, CT2) for each residual signal, 
where CTl represents magnitude changes and CT2 represents 
lope changes. A + (resp. -) value indicates a change above 

(resp. below) nomlal for a measurement residual or a positive 
(resp. negative) re idual slope. A 0 implies no change in the 
measurement value or a flat residual slope. The symbols are 
generated using a sliding window technique as descri bed in 
detai l in (Biswas et a1. , 2003). If there is a match between 
an event from the current state and a tuple of qualitative sym­
bols generated by any residual, the local diagnoser moves to 
the next state and remains active. If not, the local di agnoser 
blocks. This process continues until a local diagnoser reaches 
an accepting state, which corresponds to a unique isolation 
result. 

In our distributed diagnosis approach, identification submod­
els, M i(f), are obtained, as explai ned in the previ ous sec­
tion , as minimal submodels from the faulty system model. A 
local state-parameter estimator is con tructed for each iden­
tification submodel M i(f ), and produces a local estimate 
P(X~, k ' B~ , k Iyb:k) by using an appropriate algorithm. In this 
paper, we lise an unscented Kalman filter (UKF) (Julier & 
Uhlmann , 2004) with a variance control algorithm (Daigle, 
Saha, & Goebel, 201 2). 

4.2. Distributed Prognosis 

The local state-parameter estimates for each local di stri bu ted 
predicti on module are constructed from the local esti mates of 
the di stributed fault identification submodels. Each predic­
ti on submodel is made up of a set of states Xi and parame­
ters Gi , and constructs a local distribution P(X~, k ' e~ , kI Yh : k)' 
by assuming that the local state-parameter estimates are suf­
fiCiently represented by a mean J.L i and covariance ~i. For 
each prediction submodel M i(f ), we combine the e timates 
of the local identifica tion submodels that estimate states and 
parameters in Xi U Gi into J.Li and ~i . If.two submodels esti­
mate the sanle state vari able Or parameter, then many different 
techniques can be applied depending on the des ired perfor­
mance of the prediction submodels, e.g., taking the estimate 
with the smallest variance, or taking an average. 

Several approaches can be used to perform prediction for each 

Algorithm 1 EOL Prediction 

Inputs: { ( x i(j) (J i(j» W i (j) } N_ 
kp J kp , k p 3- 1 

Outputs: { EOLi(j) w i(j) } N_ kp ' kp J - 1 
for j = 1 to N do 

k <- k p 
x i(j) <- x i(j) k kp 
(J i(j) <- (J i(j) 

k kp 
h ·j T i (i(j) () i(j) - i ) 0 d 

W Ie E OL X k , k , U k = 0 

Predict lit 
o~~~ ~ P« (Ji+ 11 (J ~(j» 

i (j) ( i I i(j) Oi (j) - i ) 
X k +1 ~ P x k+ 1 x k , k , U k 

k <- k+l 
x i(j) . X i(j) 

k ~ k+ l 
Oi(j) <- Oi(j) 

k k+ l 
end while 
EOLi (j ) <- k kp 

end for 

predicti on submodel. In this work, given the mean and co­
variance information, we represent the distribution with a set 
of sigma points derived using the unscented transform. Then, 
each sigma point is simulated forward to EOL, and we re­
cover the statistics of the EOL di stribution given by the sigma 
poin ts (Daigle & Goebel, 2010). 

AJgori thm 1 (Daigle, Salla, & Goebel, 2012), shows the 
pseudocode for the prediction procedure. The algorithm 
is executed for each submodel i , deriving local EOL pre­
dicti ons lIsing its local threshold function based on the lo­
cal EOL constrai nts. For a given submodel, each sample 

j is propagated fo rward until T};OLj (x~:~ , B~:~ ) evaluates 

to 1. The algorithm hypothesize future inpu ts u~ . Then, 
the global EOURUL is determined by the minimum of the 
local EOLIRUL distributions for each prediction submodel, 
i.e. , p(EOL~, kp Iy h:kp ) and p(RU L~,kp Iyb:kp)· To compute 
this, we sample from each local EOL di stribution and take 
the min imum of the local samples. This is repeated many 
ti me and the statistics of the global EOL distribution are 
computed (Daigle, Bregon, & Roychoudhu ry, 20 12). 

5. CA E STUDY 

In this secti on, we apply our di stributed di agnosis and prog­
nosis approach to a four-wheeled rover tes tbed developed at 

ASA Ames Research Center. We develop a model of the 
rover, and demonstrate the approach using simulated scenar­
ios. 

5.1. Nominal System Modeling 

The rover model wa origi nal ly presented in (Balaban et al. , 
20 11 ). In this section we sunmlarize the main features and 
include some extensions to the model. 

The rover consists of a symmetric rigid frame with four 
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independently-driven wheels. The wheel speeds are governed 
by 

(q) 

. 1 
WBL = -J (TmB L - TfBL - Tg lBL + TgrB L) , (C3) 

BL 
1 

WBR = -- (TrnBR - TfBR - TglFR - TgrBR). (1:4) 
JBR 

The F, E, L , and R subscripts stand for f ront, left, back, 
and right, respectively. Here, for wheel w, Jw denotes the 
wheel inertia; Tmw is the motor torgue; TJw = /-lJwww is 
the wheel friction torque, where /-l fw is a friction coefficient; 
Tglw = r w /-lgl (vw - v) is the torgue due to slippage, where 
r w is the wheel radius, /-lgl is a friction coefficient, 'Vw is the 
translational wheel velocity, and v is the translation veloci ty 
of the rover body; and Tgrw = rw/-lgrww cos I is the torque 
due to the rotational movement of the rover body, where /-lgrw 

is a friction coefficient, W is the rotational velocity of the rover 
body, and I = arctan l i b with 1 being the rover 's length and 
b being its width . 

The translational velocity 'V of the rover is described by 

. 1 
v = - (FgIPL + F glPR + FglBL + FgIBR) ' 

m 
(CS) 

where m is the rover mass, and for wheel w, Fg1w = /-lgl (vw -

v) is the force due to slippage. The rotational velocity W is 
described by 

1 
W = -(dcos-yFgIFR + dcos-yFglBR - dcos-yFglFL 

J 
- dcos-yFglBL - dFgrPL - dFgrPR - dFgrBL 

- dFgrBR). (q;) 

Here, J is the rotational inertia of the rover and d is the di -
tance from the center of the rover to each wheel. 

The wheels are driven by DC motors with PI control that sets 
the voltages V applied to the motors. The motor currents i 
are governed by 

· 1 
iPL = L(VFL - iFLRFL - kwwpLl, (C7) 

· 1 
iPR = L (VPR - iFRRpR - kwWPR) , (cs) 

· 1 
iBL = L (VBL - iBLRBL - kwWBLl, (eg) 

· 1 
iBR = L(VBR - iBRRBR - kwWBR), (ClO) 

where L is the motor inductance, R is the motor resistance, 
and kw is an energy transformation term. The motor torgue 
is Tmw = k-riw, where k-r is an energy transformation gain . 
The voltages applied to the motors are determined by the con­
trollers, where for wheel w, Vw = p * (Uw - w w ) + 1 * eiw , 
where P is a proportional gain , Uw is the commanded wheel 
speed, I is an integral gain, and eiw i the integral error term. 

The integral error terms are governed by 

eiP L = UFL - WFL , 

eiFR = UPR - WFR , 

eiBL = UBL - WBL, 

eiBn = UBR - WBn· 

(Cll ) 

(C12) 

(C13) 

(C14) 

The batteries, which are connected in series, are described 
by a simple electrical circuit equivalent model that includes a 
large capacitance Cb in parallel with a resistance Rp , together 
in series with another resistance R s .5 The battery charge vari­
ables qi are governed by 

til = - v1/ Rpl - (iFL + iFR + iBn + iBLl , (CiS) 

i/2 = - V2/ Rp2 - (in + iFR + iBR + iBLl , (C16) 

q3 = -V3/R,,3 - (ipL + iFR + iBn + iBd , (el7) 

Q4=-V4/Rp4 - (in+ i Fn+ i BR+iBL). (CIS) 

The avai lable sensors measure the voltages of the batteries, 

vt = qJ/Cbl - R .l * (iFL + iFR + iBn + iBL), (C19) 

V 2" = q2/Cb2 - R .2 * (iFL + iFR + iBR + iBLl , (C20) 

v3+ = q3/Cb3 - R s3 * (iFL + i FR + iBn + iB L ), (C2j) 

the motor curren ts, 

and the wheel speed , 

.+ . 
tBL = tBL , 
. + . 
tBR = tBR , 

+ 
WFL = WFL, 

wpn = WFR, 

wBL = WBL, 
+ 

WBR =WBR · 

Here, the • superscript indicates a measured value. 

5.2. Faulty System Modeling 

(c23) 

(c24) 

(c2S) 

(c26) 

(C27) 

(C2S) 

(C29) 

(C30) 

In this work, we consider different faults in the motors and the 
batteries. First, we con ider friction-based damage progres­
sion in the motors, resulting in an increase in motor friction 
over time. For wheel w , the fault progression function is de­
fi ned as: 

f.t.fFL = VfFL jJ.fFL w}L' 

f.t.fFR = vfFR tLf PR W}R' 

f.t.fBL = VfBL jJ.fBL W1L ' 

f.t.fBR = vfBR jJ.fBR W1R' 

(C3d 

(C32) 

(C33) 

(C34) 

5We use a simple model here only for demonstration purposes . More detailed 
battery models for prognosis can be found in the literature, e.g., (Saha & 
Goebel,2009). 
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Sub model 
Ml 
M 2 

M 3 
M 4 
M s 
M 6 
M7 
M s 
M9 
MlO 
Mll 
M12 

ql 
q2 
q3 
q4 
iFL, eiFL 

iFR, eiFR 

iBL , eiBL 

iBR , eiBR 

WFL,V,w,J1.fFL 

WFR,V,w,J1.fFR 

WBL,V,w, J1.fBL 

WBR,V,w,J1.fBR 

f\ 
Cbl 

Cb2 

Cb3 

Cb4 

RFL 

RFR 

R BL 

RBR 

VfFL 

VfFR 

VfBL 

V[BR 

VI' 
V2' 

V3' 

V4' 

iFL 
.+ 
lFR 
i ElL 
i ElR 
wh . 
wFR 

+ 
WBL 

WBR 

CIS ,C19 ,C23 ,C24 ,C2S ,C26 

CI 6 ,C20 ,C23 ,C24 ,C2S ,C26 

Cl7 ,C21 ,C23 ,C24 ,C25 ,C26 

Ct S ,C22 ,C23 ,C24 ,C25 ,C26 

C7,Cl l ,C23,C27 

CS,C12,C24,C28 

C9,C13,C25,C29 

CtO ,CI4,C26 ,C30 

Ct ,C3 t ,CS,Cs,C23 ,C2S , C29 ,C30 

C2 ,C32 ,Cs ,Cs ,C24 ,C27 ,C29 ,C30 

C3,C33 ,CS,C6,C2S ,C27 , C2S ,C30 

C4 ,C34 ,CS,Cs,C26 ,C27 ,C2S ,C29 

Table 1. Set of minimal submodels for the rover testbed computed from the nominal system model. 

SubmodeI Xi 
M s ,9 

M 6,10 
M7,1l 

M ,12 

M I ,2,3,4 

WFL , V,W , J1.fFL , iFL, eiFL 

WFR, v, w, J1.jFR , iFR, ei FR 
WB L , V ,W , J1.fBL, iBL, eiBL 

WBR, V,W,J1./BR, iBR, eiBR 

ql , q2 , q3, q4 

VfFL, RFL 

//fFR,RFR 
VfBL, RBL 

//[BR,RBR 
Cbl, Cb2 , Cb3, Cb4 

UFL, W}R , W~L,w1R 
UFR , W~L ) W~L,W~R 
'UBL, WFL,wFR,wBR 

UBR , W~L' W~R' wln 
"<t . + -+ - + 
lFL ' lFR, lBL , lBR 

Cs UC9 
C6 U ClO 
C7 U Gil 
CB UC12 

Cl U C2 U C3 U C4 

Table 2. Residual generation and fault isolation submodels. 

where jJ, f w is the fa ult parameter, and l/ fw is the fault pro­
gression parameter. 

We also consider abrupt resistance increases in the motors, 
represented as an abrupt change in parameter Rw for wheel 
w, with 6.Rw as the fault progression parameter. 

For the batteries, we consider abrupt capacitance decreases, 
represented as an abrupt change in parameter Cbi for capacity 
i. 6.Cbi is the fault progression parameter. 

We are interested in predicting when any of the rover batteries 
are at their charge threshold, beyond which the batteri e will 
be damaged. These faul ts can cause the charge thresholds to 
be reached earlier ince they will affect current draw. The 
constraints are given a 

ql > q-, 

q2 > q-, 

q3 > q-, 

q4 > q-, 

(C3S ) 

(C36) 

(C37) 

(C3 ) 

where the charge threshold is given by q- = 2 X 104 C. The 
rover cannot be operated when any of the constrai nts C35-C3 

are violated. 

5.3. Results 

To demonstrate the validi ty of the approach, we describe two 
different faulty scenarios of the rover. In the firs t, fricti on 
damage is progressing on one motor, and in the second, a 
capacitance decrease occurs in one battery. In all cases, the 
rover travels between various waypoints, moving at an aver­
age speed of 0.5 mfs. Table 1 shows the minimal submodels 
for the rover derived by using measured values as local in­
puts. Table 2 shows the submodels for residual generation 

V i Y i Ci 

iFL, iFR , iBL, iBR 0 CIS,C19,C3S 

iFL, iFR , iBL, iBR 0 CIS ,C20 ,C36 

iPL) iFR, iBL ) iBR 0 CI7,C21 ,C37 

iFL , iFR , iBL, iBR 0 C I S ,C22,C3S 

Table 4. Prediction submodels for capacitance faults. 

and fault isolation. These submodels have been designed to 
obtain globally diagnosable subsystems by using the design 
algorithm in (Bregon et a1. , 2011 ). In thi work, we have con­
sidered five subsystems, one for each wheel components and 
another one for the batterie . For example, the subsystem fo r 
the fron t left wheel components is not globally di agnosable if 
we only consider submodel M g (which includes the front left 
wheel fric tion wear parameter, l/fFL) . The design algori thm 
in (Bregon et al., 2011 ) determines that we need to merge 
submodels M 5 and M g to make the front left wheel subsys­
tem globally diagnosable. The process is similar fo r the rest 
of the ubsystem . 

Minimal submodels for identifica tion can be computed from 
the minimal submodels in Table 1 by defining the fault pro­
gre sion function (if nece sary), and by making the fault pa­
rameter to become a state and the con·esponding fa ul t pro­
gression parameter to become the parameter. Regarding pre­
dicti on, the con-ect predicti on submodels to use depend on the 
scenario, as will be shown later. 

5.3.1. Friction Damage Progression 

We first consider a scenario in which, for the front-left mo­
tor, the fricti on begins to increase. The friction damage pro­
gression begins at t = 50 s with friction wear parameter 
l/fFL = 1 X 10- 3 s. A faul t is detected by the local di-
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Su6moael :Xi tli Ui 17i Vi 

M!3(J.LfFL) gl , iFL, eiFL, WFL, J.LfFL Cbl,l/fFL , RFL UFL , V, W, iFR , iBL, iBR 0 CI,C31 ,C7,Cll ,CI5,C35 

M14(J.LfFL) g2 , iFL, eiFL , WFL, J.LfFL Cb2,vfFL,RFL UFL , V, w, iFR , iBL , iBn Ii'} Cl,C31 ,C7,Cll ,C16 ,C36 

MIS (J.LfFd g3, iFL, eiFL , WFL, J.Lf FL C b3 , l/fFL , RFL UFL , v, W, iFR, iBL, iBR Ii'} CI ,C3 1 ,C7 ,Cll,CI7 ,C37 

M I 6 (J.LLFL) Q4, iFL, eiFL, WFL, J.L[FL C b4 , V[FL , RFL UFL , v , w , iFR I iBL I iBR Ii'} CI,C31,C7,Cll,Cl8,C38 

Table 3. Prediction submodels using commanded wheel speeds and rover velocities as local inputs. 

2.5 
- -· //fFL 

2 
---Mean(D f F L) 

-Min(DfFL) and Max(DfFL) 

0.5 

O~~~--~--~--~--~--~--~--~--~--~ 

150 200 250 300 350 400 450 500 550 600 
Time (s) 

Figure 2. Estimated VjFL values. 

5 

4 

............ --...,..-~ 

%L---~200~--4~OO~--6~OO----8~OO----1~OO-0---1 2~0-0---I~~0---l ro~0 
Time (5) 

Figure 3. CutTent iF L increase through time. 

agnoser computed from submodel M s,g at 119.25 s, via an 
increa e in the motor current iF L. The initial candidate list is 
immediately reduced to one candidate, {//jFd, based on the 
signatures and orderings (other faults in the front left wheel, 
like RF L, produce different fau lt signatures). Thus the true 
fa ult is isolated. 

Fault identification is initiated once the candidate is isolated. 
For the friction damage progre sion fault, the wear rate I/jFL 

estimate averages to // f F L = 1 X 10- 3 s with very small 
output error. Figure 2 shows the wear parameter estimate for 
friction damage. 

As a result of the continuously increasing friction, the current 
drawn by the motor increases as well in order for the motor 
controller to maintain the same desired wheel speed (Figure 
3 shows this increase in the current through time) . Hence, the 
total current drawn from the batteries is increased, and EOL 
occurs around half an hour. Because iF L is constantly chang­
ing, and iJ1 a way that is dependent on the motor state, it is 

incorrect to use it as a local input for predi(:tion and to de­
compose the prediction problem into independent local pre­
diction problems for the batteries and motors, i.e ., it is not 
known a priori. Therefore, we compute submodels using as 
local inputs average values for the remaining motor currents, 
average commanded wheel speeds, and average rover trans­
lational velocity v and rotational velocity w. The prediction 
submodels for this case are shown in Table 3. EOL for this 
fau lt is computed by merging the local EOL from those sub­
models in the table. Note that the predicti on submodels used 
in this case do not correspond directl y to those used for es­
timation. So, when constructing the estimate for M 13 , for 
example, it takes the estimates from M l and M g. 

The prediction results are shown in Figme 4. The increased 
friction causes the batteries to discharge faster, and EOL oc­
curs around 1650 . Here, we used the relative accuracy (RA) 
as a measure of prediction accuracy, and the relative standard 
deviation (RSD) as a measure of spread. Each prediction met­
ric is averaged over multiple prediction points (one every 100 
s of usage) (see (Saxena et aI., 2010; Daigle, Saha, & Goebel , 
2012) for tbe mathematical definitions of these mell"ics). For 
this experiment, RA averages to 91.63% and RSD averages 
to 16.26%. 

For the ake of comparison, we also ran this experiment us­
ing the centralized approach. Figure 5 shows the prediction 
results obtained. Looking at the prediction metrics, we see 
that the centralized approach behaved very similar to the di s­
tributed approach bu t a li ttle bit worse, with RA averaging 
90.90% and RSD averagi ng 17.72%. However, this is just 
a particu lar example, but, in general, both approaches obtain 
equiva lent results . 

5.3_2. Capacitance Decrease 

As a second scenario, we consider a capacitance decrease 
fau lt in battery 3 of the rover, Cb3. The fa ult begins at t = 50 
s with an abrupt decrease from 2000 to 1 00 in the capacity 
of the battery. The fault is detected immediately by the local 
diagnoser computed from sub model M 1,2,3,4 at 50.0 s, via an 
increa e in the voltage V3 . The fault candidate is immediatel y 
isolated, {Cb3 } , based on the signatures and orderings, thus 
starting the fault identification. For the capacitance fault, tbe 
estimated value of the capaci tance averaged Cb3 = 179 .6 
C with very small output error. As a result of the decrease 
in capacitance, the battery discharges at a faster rate, and so 
reaches end of discharge more quickly. The prediction sub-
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Time (s) 
1500 

Figure 4. Predicted RUL of the rover for the distri buted ap­
proach. The mean is indicated with a dot and confidence in ­
tervals for 5% and 95% by lines. The gray cone depicts an 
accuracy requirement of 15%. 

2500 

2000 

~ 1500 
~ 

::l 
~ 1000 

500 

- - -RUL' 
[(1 - Ot) RU L' , (1 + Ot) RU L oJ 

O+----------.----------~--------~--'·~, 
o 500 1000 

Time (s) 
1500 

Figure 5. Predicted RUL of the rover for the centraJized ap­
proach. The mean is indicated with a dot and confidence in ­
tervals for 5% and 95% by lines. The gray cone depicts an 
accuracy requirement of 15%. 

models for fa ults in the capacity of the batteries are shown 
in Table 4. For this scenario, with a fault in Cb3 , we used 
submodel MIg, obtaining RA average to 98.25% and RSD 
average to 10.12%. 

6. CONCLUSIONS 

This paper presented a distributed integrated model-based 
diagnosis and prognosis framework. Our approach starts 
off with a common modeling paradigm to model both the 
nominal behavior and fault progression, and then proposes 
a framework where the globaJ system model is decomposed 
into smaller independent submodels. These submodels are 
then used to distribute the different diagnosis and prognosis 
tasks. Model decompostion is carried out based on the re­
quirements and constraints of each task. We demonstrated 
our approach on a four-wheeled rover testbed, where we di­
agnosed fa ul ts and prognosed the EOLIRUL accurately. We 
compared results obtained by using our distributed approach 
against those obtained using a centraJ.i zed approach, showing 
that both approaches obtain the same results. 

Most approaches in the literature focus in either the diagnosis 
or the prognosis task. Some works have proposed the inte­
gration of both tasks within a common fra mework (Patrick 
et a!., 2007; Orchard & Vachtsevanos, 2009; Roychoudhury 
& Daigle, 2011 ), however, unlike our approach, these ap­
proaches perform the diagnosis and prognosis tasks in a cen­
tralized way, thus sufferi ng from calabil ity issues due to the 
large number of states and parameters in real-world systems. 
To the best of our knowledge, there is no approach in the lit­
erature which combines, in a di stributed way, the diagnosis 
and prognosis tasks. Our approach is limited by the number 
and location of the sen ors in the system. Since our decom­
position aJgorithm is guided by the set of available sensors, 
the distribution capabilities of the approach is determined by 
them. 

In future, we will apply this approach to larger systems, to 
study the scalability of our diagnosis and prognosis scheme, 
and wi ll perform a more detai led comparison against the re­
sults obtained by using a centralj zed approach. We will also 
extend the capabi lity of thi s approach to hybrid systems, as 
well as diagnosis and prognosis of multiple fau lts. 
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