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This work presents an approach to predicting loss-of-control with the goal of provid-
ing the pilot a decision aid focused on maintaining the pilot’s control action within pre-
dicted loss-of-control boundaries. The predictive architecture combines quantitative loss-
of-control boundaries, a data-based predictive control boundary estimation algorithm and
an adaptive prediction method to estimate Markov model parameters in real-time. The
data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe
set of control inputs that will keep the aircraft within the loss-of-control boundaries for a
specified time horizon. The adaptive prediction model generates estimates of the system
Markov Parameters, which are used by the data-based loss-of-control boundary estimation
algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to
illustrate the features of the architecture.

I. Introduction

Loss-of-control (LoC) has been the number one contributing factor to fatal airline accidents, and
has resulted in more fatalities than any other factor during the past ten years.1 Generally, LoC is

characterized2 as motion that is:

• outside the normal operating flight envelopes

• not predictably altered by pilot control inputs

• characterized by nonlinear effects, such as kinematic/inertial coupling, disproportionately large re-
sponses to small state variable changes, or oscillatory/divergent behavior

• likely to result in high angular rates and displacements

• characterized by the inability to maintain heading, altitude, and wings-level flight.

This work presents an approach to predicting LoC with the goal of providing the pilot a decision aid
focused on maintaining the pilot’s control action within predicted LoC boundaries. The predictive archi-
tecture estimates LoC boundaries by combining quantitative LoC criteria, a data-based predictive control
boundary estimation algorithm and an adaptive prediction method.
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Figure 1. Quantitative LoC Criteria and flight data from Ref. 2.

Historically, LoC has been determined to be a factor in an accident by qualitative judgement based upon
accident investigation experience. Quantitative LoC criteria2 have been created to define LoC events. These
criteria are in the form of boundary boxes on combinations of system states and control inputs, as seen in
Figure 1. These boundaries are based on a historical LoC events. The authors propose that violation of any
three of the quantitative LoC criteria constitutes LoC, violation of any two boundaries is borderline LoC,
and typical aggressive flight test maneuvers typically violate at most one boundary. Our work presented in
this paper combines multiple of the Quantitative LoC criteria into a single composite predictive boundary
that aids the pilot in avoiding LoC scenarios. Particularly, the application in section V combines elements
of the Pitch Attitude, Bank Angle, Dynamic Pitch Attitude, Dynamic Roll Attitude, Percent Pitch Control,
and Percent Lateral Control criteria into a one two-dimensional display (discussed in Section II.A).

The LoC boundary estimation algorithm3 uses a data-based predictive control (DPC) approach to es-
timating boundaries on control actions to provide information to pilots and/or control systems to assist in
avoiding LoC scenarios. The quantitative LoC criteria are used to define safe operating envelopes for the
aircraft. A DPC algorithm was developed that finds the minimum control input that would result in the
aircraft exceeding a safe operating envelope at various minimum time estimates. The calculated control
inputs become a boundary of a set of safe control inputs. With this information, a pilot could change flying
strategy or an autonomous system could schedule controller gains to prevent the vehicle from exceeding
the envelope. The DPC algorithm assumes the aircraft is operating in the normal operating envelope, with
approximately linear dynamics, and knowledge of linearized aircraft dynamics is available in the form of
Markov Parameters.

The adaptive prediction model4 uses an adaptive prediction method for detection and mitigation of LoC,
which works parallel to the flight control system without interacting with it. It takes the aircraft input and
state measurement signals to generate the adaptive estimates of the unknown parameters, without requiring
parameter convergence or special maneuvers. The estimated parameters are used to derive estimates of the
system Markov Parameters. While the parameters of the adaptive prediction model do not converge to the
parameters of the true system, the dynamics of the prediction model match the true dynamics of the system.

This work combines the DPC boundary estimation algorithm with the adaptive prediction method to
estimate control boundaries for a nonlinear aircraft. The adaptive prediction model is used to generate
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estimates of the true Markov Parameters, which are used by the DPC estimation algorithm. The combined
algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
The aircraft model includes nonlinear aircraft dynamics, actuator position and rate saturation, and surface
failures.

II. Pilot Decision Aid and the Predictive Architecture

A. Pilot Decision Aid
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Figure 2. Conceptual 2-dimensional control
limit display.

The safest course in aircraft flight is to operate as far from
the edge of the envelope as possible. However, maneuver-
ing near the edge of the envelope may be required in cer-
tain circumstances (e.g. recovering after upset, take-off and
landing). Furthermore, uncertainties introduced into the
system, such as through damage or failure, can change the
boundaries of the envelope, and can make certain control
inputs more likely to take the aircraft out of the envelope.
Control limits can be estimated using data-based predictive
control and various minimum time estimates. The control
limits can be represented as an n-dimensional hypercube,
where n is the number of control inputs. The region within
the box can be treated as a safe region.

A concept 2-dimensional display for a system with lat-
eral and longitudinal control inputs is shown in Figure 2.
Two notional safe regions are shown for the minimum con-
trol input needed to exceed the envelope within 1 second
and 5 seconds. The current control input is also shown as
being within the green box. The control limits can also
be updated periodically, even in real time,5 as the limits
change. This information may provide lead time for a pilot
to change flying strategy or for an autonomous system to
schedule controller gains to prevent the vehicle from exceed-
ing the envelope.

B. Predictive Architecture for LoC Boundary Estimation

Maneuverability Margin Approach

Aircraft

   Pilot

Nominal Control

r(t)

! 

xm(t)

! 

x(t)

! 

u(t)

Reference Model

Adaptive
Prediction
Model

    DPC Law

LoC Boundary 
EstimatesPiloting AidPiloting Aid

Estimated
Dynamics

Figure 3. Predictive Architecture for LoC
Boundary Estimation.

The predictive architecture is shown in Figure 3. The black
boxes and signal form the standard aircraft control archi-
tecture, and are unmodified for this work. The predictive
architecture includes the the red boxes, which are the Adap-
tive Prediction Model, the DPC Law, the LoC Boundary
Estimates, and the Pilot Aid. The predictive architecture
uses data available from the standard architecture, includ-
ing pilot command r(t), input to the aircraft u(t), and avail-
able states from the aircraft x(t). The adaptive prediction
model uses the available data to produce estimates system
dynamics, and the DPC laws use the data and the estimated
dynamics to predict LoC input boundaries, which are then
fed to the piloting aid. The predictive architecture does
not directly feed back commands or signals to the standard
architecture. Indirect feedback is present only though the
pilot, as the piloting aid may be used by the pilot to make
decisions and take corrective action.
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III. Adaptive Prediction Model

In the previous section, knowledge of S, or an estimate
of S is required for the identification of controller gains G, H, K. Although a nominal S can be assumed and
errors in the prediction can be compensated for by the identification of the controller gains, experience has
shown that improved accuracy in S leads to improved performance of the estimation. An adaptive prediction
model4 can be used to obtain estimates of the system dynamics. The adaptive prediction model is preferred
over standard parameter estimation techniques as it does not require persistence of excitation for parameter
convergence.

A. Prediction Model

The adaptive prediction model assumes knowledge of a nominal model A0, B0 of the system, where Ac =
A0 + ∆A and Bc = B0 + ∆B. Ac and Bc are the continuous system matrices and ∆A and ∆B are the
difference between the assumed system dynamics and the true system dynamics. The continuous system
dynamics are expressed as

ẋ(t) = A0x(t) +B0u(t) + ∆Ax(t) + ∆Bu(t) (1)

The prediction model is defined as

˙̂x(t) = A0x̂(t) +B0u(t) + ∆Â(t)x(t) + ∆B̂(t)u(t) + λ(x(t)− x̂(t)) (2)

where λ is a design parameter and ∆Â(t), ∆B̂(t) are the estimated parameters, updated by

∆
˙̂
A(t) = γx̃xT (t) (3)

∆
˙̂
B(t) = γx̃uT (t) (4)

where x̃ = x(t) − x̂(t) is the prediction error. The asymptotic behavior of the the prediction error, as
well as the parameter errors defined by ∆Ã(t) = ∆A(t) − ∆Â(t), ∆B̃(t) = ∆B(t) − ∆B̂(t) is such that
x̃ → 0,∆Ã(t) → 0,∆B̃(t) → 0 as t → ∞. Further details of the derivation, theorems and proof of error
properties can be found in Ref. 4.

IV. Data-Based Predictive Control

Consider an ni-input, no-output system with the system state x(k) and output y(k) given by

x(k + 1) = Ax(k) +Bu(k) +Bdud(k)

y(k) = Cx(k) +Du(k)
(5)

We assume that neither the system model, defined by A, B, Bd , C, and D, nor the initial state of
the system, x(0), are known, but a sufficiently rich and long excitation input u(k) and possibly disturbance
corrupted output data y(k) is available. The disturbance input, ud(k), if present, is assumed to be a sum of
a finite number of unknown harmonics. Only an upper bound of the number of harmonics is known.

A. Data-Based Predictive Control Law

A predictive controller can be designed to minimize the receding-horizon cost function

J(k) = [ys(k + ω)− zs(k + ω)]
T
Q [ys(k + ω)− zs(k + ω)] +

uTs+ω(k)Rus+ω(k) (6)

+ [us+ω(k)− us+ω(k − 1)]
T
RS [us+ω(k)− us+ω(k − 1)]
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where

zs(k + ω) ≡


z(k + ω)

z(k + ω + 1)
...

z(k + ω + s− 1)

 , ys(k + ω) ≡


y(k + ω)

y(k + ω + 1)
...

y(k + ω + s− 1)

 , us+ω(k) ≡


u(k)

u(k + 1)
...

u(k + ω + s− 1)


(7)

The vector zs(k + ω) is the desired output trajectory to be tracked. The output error cost is evaluated
over the interval from time k + ω to k + s + ω − 1, with a weight matrix of Q. The control input cost is
evaluated over the interval from time k to k+ s+ω− 1, with a weight matrix of R . The control smoothing
cost, which is the weighted norm of the difference between the control input at time k and the previous
control input at time k−1, is evaluated over the interval from time k to k+ s+ω−1, with weighting matrix
RS .

The predictive controller3 is in the dynamic feedback form:

u(k) = Guρ(k − ρ) +Hyρ(k − ρ) +Kzs(k + ω) (8)

where

uρ(k − ρ) ≡


u(k − ρ)

u(k − ρ+ 1)
...

u(k − 1)

 , yρ(k − ρ) ≡


y(k − ρ)

y(k − ρ+ 1)
...

y(k − 1)

 (9)

In this context, ρ is the number of past data points, ω is the start of the prediction window, and s is
the length of the prediction window. A conservative value for ρ can be chosen using an upper bound on the
order of the system and the number of distinct disturbance frequencies.

B. Identification of Controller Gains

To employ the optimal control law in Eq. 8, the controller gains G, H, K must be either known a priori
or estimated online. For an online implementation of the control laws, the gains are designed directly from
input-output data via a relationship that relates G , H , and K to input-output data. The direct relationship
is the following equation:

Su(k) = Guρ(k − ρ) +Hyρ(k − ρ) +Kys(k + ω) (10)

where S is the first ni rows of {I−Γ−1
[
R+ (I − LS)

T
RS (I − LS)

]
} and Γ is a combination of cost function

weighting matrices and system parameters defined as

Γ =
(
R+ (I − LS)TRS(I − LS) +WTQW

)
(11)

where W = [OsCω, Ts], Cω =
[
Aω−1B · · · AB B

]
,

LS =


0 0 0 0

Ir×r 0 0 0

0
. . . 0 0

0 0 Ir×r 0

 , Os =


C

CA
...

CAs−1

 , and Ts =


D

CB D
...

. . .
. . .

CAs−2B · · · CB D


Further detail about the derivation of Eq. 10 can be found in Ref.5 Eq. 10 has the property of being an
open-loop input-output equation with the controller gains G, H, and K from Eq. 8 included explicitly as
coefficients of the equation. Using Eq. 10, the coefficients of the open-loop input-output model can be
identified, and used in Eq. 8 as the gains of a dynamic feedback controller.

The data-based predictive controller developed for this study updates G, H, and K using Eq. 10 and
past input and output data. Since Eq. 10 is a non-causal input-output relationship, the approach begins
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with a time shift of −(s + ω) to the data sets within Eq. 10 in order to fully populate the super-vectors of
collected data, with the most recent data used being y(k − 1) and u(k − 1). The time-shifted equation is
then

Sus+ω(k − s− ω) = Guρ(k − ρ− s− ω) +Hyρ(k − ρ− s− ω) +Kys(k − s) (12)

Eq. 12 is then arranged in the form

Sus+ω(k − s− ω) = Ψ(k)Φ(k − 1) (13)

where

Ψ(k) = [G(k)H(k)K(k)] andΦ(k − 1) =

 uρ(k − ρ− s− ω)

yρ(k − ρ− s− ω)

ys(k − s)

 (14)

In general, any linear estimation algorithm may be use to identify the parameters in Ψ. For this appli-
cation a recursive least-squares estimation7 of the form

Ψ(k) = Ψ(k − 1) + {Su(k − s− ω)−Ψ(k − 1)Φ(k − 1)} Φ(k − 1)TΘ(k − 1)T

1 + Φ(k − 1)TΘ(k − 1)Φ(k − 1)
(15)

Θ(k) = Θ(k − 1)− Θ(k − 1)Φ(k − 1)Φ(k − 1)TΘ(k − 1)T

1 + Φ(k − 1)TΘ(k − 1)Φ(k − 1)
(16)

is used to update G , H , and K in Ψ, starting with some initially large covariance matrix Θ(0) and an
initial guess of the controller gains Ψ(0) and S. Obtaining an estimate of the parameter S will be discussed
in section D. In practice, the control error {Su(k− s−ω)−Ψ(k− 1)Φ(k− 1)} found in Eq. 15 is subject to
a dead-band. The estimation of Ψ is conducted every time step. The optimal control law can be found as

u(k) = G(k)uρ(k − ρ) +H(k)yρ(k − ρ) +K(k)zs(k + ω) (17)

for a set of desired outputs zs(k + ω).

C. Selection of Controller Parameters

The control law in Eq. 8 and the input-output model in Eq. 10 are based on the interaction matrix formula-
tion.6 To guarantee existence of the interaction matrix, the value of ρ is selected such that noρ = n+ 2f + 1
and 0 ≤ ω ≤ ρ, where n is the system order, f is the number of distinct disturbance frequencies, and the 1
accounts for a constant disturbance if present.

To determine the control boundary, the goal is to find the minimum control input that will result in the
vehicle being at the boundary at a specified time t. Rather than specify an entire desired output trajectory
zs(k + ρ) from the current time until time t, the start ρ of the prediction window can be chosen as ρ = t,
and the length s of the prediction window can be chosen as s = 1. Choosing the weighting matrix Q to be a
diagonal matrix with non-zero elements only for the k+ t time step can produce the same effect, but results
in much more computation in practice. Including only the output error cost and control input cost results in
a first control input u(k) that is very conservative, and not representative of the boundary of the control. By
including the control smoothing cost, we can cause the control input to be nearly constant from the current
time until the end of the prediction window. Also, by setting the first ni diagonal elements of RS to zero,
the controller is allowed to select any control input, and afterwards remain nearly constant. Setting the first
ni diagonal elements of RS to zero also has the benefit of eliminating an additional term from the control
law in Eq. 8 that would otherwise be present, thus simplifying the computation of the control input. The
resulting control is the amplitude of a step input that, if applied, would result in the vehicle being at the
boundary of the envelope at time t. It is important to note that an under-damped second order system will
have overshoot, and for a time t that is chosen beyond the peak overshoot, the system will leave the envelope
before t, and return to the boundary at time t. Therefore, the boundary generated is an estimate, not a
guarantee of the minimum control that will result in the vehicle leaving the envelope. However, multiple
algorithms each having a unique time estimate t can be used to create multiple limits, and the innermost
box could be considered the safe region of operation.
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D. Integration with Adaptive Prediction Model

The prediction model from section III is to be used with the data-based predictive control (DPC) algorithm
to generate the estimated control input boundaries. The DPC algorithm expects discrete A and B matrices
of the form shown in Eq. 5. Estimates of the continuous system matrices Âc, B̂c are formed using the
estimated parameters from Eq. 2 as Âc(t) = A0 + ∆Â(t), B̂c(t) = B0 + ∆B̂(t). The matrices Âc, B̂c are
fixed over the future horizon for which the DPC algorithm is designed, and Âc, B̂c are discretized and
used to compute Γ using Eq. 11. Γ can then be used to compute an estimate of S as the first ni rows of

{I −Γ−1
[
R+ (I − LS)

T
RS (I − LS)

]
}, and S can be used in Eq. 15 to update the control gains Ψ(k). The

gains Ψ(k) are then used to compute the boundary using Eq. 17.

V. Application to a Non-linear Generic Transport Model

A. Generic Transport Model

The operation of the Data-Based Predictive Control algorithm with Adaptive Prediction model is demon-
strated with a medium fidelity 6-DOF generic transport model8 (GTM) with nonlinear coupled aerodynamics,
airframe damage effects, and actuator position and rate saturation limits.

B. Experimental Set-up

The GTM model is trimmed at Mach 0.8 and 30k feet. Both a nominal aircraft and an off-nominal aircraft
are simulated for comparison. The off-nominal aircraft has a 25% tip loss of the left elevator. Both aircraft
are trimmed at the start of the simulation, and receive the same pre-recorded inputs.

For this example, a single DPC algorithm is designed for the entire aircraft. The order of the system is
n = 9, the number of outputs ni is 2, and there are no disturbances, so the minimum ρ that can be used
is 5. If only an estimate of the order of the system and an upper bound on the number of disturbance
frequencies is known, then ρ can be chosen conservatively. For this example, ρ is selected to be 10 as such
a conservative choice. As discussed previously, the length s of the prediction window is selected as s = 1,
and the values for ω used correspond to 3 seconds, or ω = 300 for a sampling period of dt = 0.01, which is
used for this example. The output error weighting matrix Q is a single value and chosen to be Q = 1, and
the control input weighting matrix R is a diagonal matrix with diagonal elements 0.000001. The control
smoothing weighting matrix RS is a diagonal matrix with first two diagonal values 0, and subsequent values
10. An initial guess for controller gains G, H, and K were computed from linear decoupled state-space aircraft
models at a different trim point. Both the nominal and off-nominal systems were then simulated with the
same pre-recorded sequence of pilot inputs applied to each system.

C. Results

Figures 4 and 5 show a series of snapshots of the control inputs and control limits during six seconds of
simulation. A two-second trace of the control history is shown as a continuous black line, with the earliest
point marked as a black dot. The boundaries shown are also the boundaries for the time at which the
snapshot was taken. The aircraft attitude is also shown for one second leading up to the time at which the
snapshot was taken.

In the first column of Figure 4, the aircraft has maneuvered from steady-level flight to a right-banked
turn, and the reduced longitudinal control boundary for the off-nominal condition is clearly visible. The
control boundary for the off-nominal aircraft is less than the control boundary for the nominal aircraft. The
lateral boundary has saturated at full left lateral control input, thus indicating that the aircraft will not leave
the lateral boundary within three seconds. In the second column of Figure 4, the aircraft is rolling to the
left, and the off-nominal lateral boundary is now less than full lateral control input, due to the asymmetric
tail loss. The first column of Figure 5 shows the condition as the aircraft rolls back to the right, showing the
reduced control boundary and indicating that the aircraft can still exit the lateral boundary. The second
column of Figure 5 shows the condition as the aircraft rolls back to the wings level, saturated lateral control
boundary.
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VI. Conclusion

This work extends previous results for estimation of control boundaries that permit safe operation of an
aircraft to uncertain and linear time-varying systems. This work is envisioned to assist pilots or autonomous
systems in predicting and preventing LoC events. The algorithm is based on input-output data, and the
boundaries can be updated for the current aircraft and flight condition. The control boundaries may help
to reduce inappropriate pilot actions, and may help alert the pilot to reduced control authority.
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(a) Boundary t=1s (b) Boundary t=2s

(c) Attitude in degrees (d) Attitude in degrees

Figure 4. Time series of boundaries and aircraft attitude at t=1s and t=2s.
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(a) Boundary t=3s (b) Boundary t=4s

(c) Attitude in degrees (d) Attitude in degrees

Figure 5. Time series of boundaries and aircraft attitude at t=3s and t=4s.
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