NASA/TM-2012-216481

Hierarchical Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

lain J. Whiteside
Centre for Intelligent Systems and their Applications
University of Edinburgh, Scotland

December 2012

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report
Server, thus providing one of the largest
collection of aeronautical and space science STI
in the world. Results are published in both
non-NASA channels and by NASA in the NASA
STI Report Series, which includes the following
report types:

¢ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

¢ TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

o CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

¢ SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
Program, see the following:

¢ Access the NASA STI program home page at
http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

¢ Fax your question to the NASA STI Help
Desk at 443-757-5803

¢ Phone the NASA STI Help Desk at
443-757-5802

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2012-216481

Hierarchical Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

lain J. Whiteside
Centre for Intelligent Systems and their Applications
University of Edinburgh, Scotland

National Aeronautics and
Space Administration

Ames Research Center
Moftett Field, California 94035-1000

December 2012

Acknowledgments

This work was carried out by Iain Whiteside at the NASA Ames Research Center during an internship
funded by the AFCS element of the SSAT project in the Aviation Safety Program of the NASA
Aeronautics Mission Directorate.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Abstract

We introduce hierarchical safety cases (or hicases) as a technique to overcome some of the
difficulties that arise creating and maintaining industrial-size safety cases. Our approach
extends the existing Goal Structuring Notation with abstraction structures, which allow
the safety case to be viewed at different levels of detail. We motivate hicases and give
a mathematical account of them as well as an intuition, comparing them to other related
concepts. We give a second definition which corresponds closely to our implementation
of hicases in the AdvoCATE Assurance Case Editor and prove the correspondence between
the two. Finally, we suggest areas of future enhancement, both theoretically and practically.

Contents

1

2

Introduction
Goal Structuring Notation

Examples of Hierarchy
3.1 Abstract Evidence L.
3.2 Abstract Strategies
3.3 Abstract Goals
34 CaseStudies
3.4.1 Aileron Correctness Proof
3.4.2 Swift High-level Structure
3.5 Non-examples of Abstraction
3.6 Summary e

Safety Cases

4.1 Safety Cases.

4.2 Hierarchical Safety Cases

4.3 Relating Safety Cases and Hicases
4.3.1 Safety Cases as Hicases
4.3.2 Skeleton of a Hicase

4.4 Extending the Core GSN Model

4.5 Viewing the Hierarchy

An Implementation-focussed Definition
5.1 Hierarchical Extension,

Implementation

6.1 Creating Hierarchical Nodes
6.2 Viewing Hierarchical Details
6.3 Modifying a Hinode

Conclusions

7.1 Related Work and Concepts
7.1.1 Hiproofs
7.1.2 Safety Case Modules
7.1.3 Hierarchy in Safety Cases

7.2 Future Work
7.2.1 Hicases Development
7.2.2 Improving AdvoCATE

List of Figures

S O W N

o0

10
11

12
13
14
15
16
17
18
19
20

A safety case fragment for the Swift UAV 5
Syntax of the GSN notation 7
A fragment of an auto-generated safety case 9
Constructing hierarchy as a new abstract evidence node 10
Viewing the abstract evidence node as a black-bor node 11
A safety case fragment, where we can group two strategy appli-

cations 11
A hierarchical strategy in the Swift safety case 12

A hierarchical strategy in the Swift safety case, viewed as a blackbox 13
An argument with two trivial subgoals (‘AP object properly ini-
tialised’ and ‘Current, previous, and next waypoints properly de-

fined’), which can be hidden 14
‘Boxing up’ the trivial subgoals 15
When the hierarchical strategy is closed, the trivial subgoals are

hidden 16
Hierarchical groupings for hazard table construction 18
Aileron computation structure (white portions) 19
Hierarchical presentation of the aileron computation proof 20
Presentation of the argument structure of the Swift safety case . 21
Hierarchical Swift safety case, with only top-level node open . . . 22
A presentation of the hierarchy of a safety case 27
A hicase with the potential for overlapping hierarchy 30
Original safety case in AdvoCATE 32
Safety case with hierarchy created 33

1 Introduction

A safety case, or more generally an assurance case, is a structured argument,
supported by a body of evidence, which provides a convincing and valid justi-
fication that a system is acceptably safe (or assured) for a given application in
a given operating environment. The development of a safety case has become
common practice for the certification of safety-critical systems in the nuclear,
defense, oil and gas, and rail domains. Indeed, the development and acceptance
of a safety case is a key element of safety regulation in many safety-critical
sectors. The Goal Structuring Notation (GSN) is emerging as the de facto rep-
resentation for the argument structure of a safety case, representing safety cases
using a “boxes and arrows” approach. Until recently, safety cases were typically
constructed manually, but tools are now emerging to assist (and sometimes au-
tomate) construction of safety cases. The AdvoCATE Assurance Case Editor,
developed here at NASA Ames, is one such tool [5].

Figure 1 shows a small fragment of a safety case for the Swift Unmanned
Aircraft System, which is being developed at NASA Ames [4], as represented
in AdvoCATE. The argument proceeds top-down from the high-level goal that
the Swift UAS is safe. All facets of the argument are explicit, including the
assumptions made about a goal and the contextual information necessary to
make sense of the goal. For example this safety case only justifies safety of
the Swift given appropriate weather conditions and within its defined range
of operation. So-called strategies are used to break down high-level goals into
simpler subgoals. Once these subgoals are simple enough, they are solved by
evidence: references to artifacts that guarantee the property.

Necessarily, such diagrams become very large indeed. As an anecdotal ex-
ample, a typical safety case for a medium-size North Sea production platform
covers anywhere from 490-660 pages [10]. This makes them difficult to develop,
evaluate (or understand), and maintain. Often, the safety case is constructed
using design patterns or has some natural higher-level structure that is clear to
the author (if only at the time of writing), but can become obscured by the de-
tail so it is “hard to see the wood for the trees”. It is also becoming feasible for
some parts of safety cases to be constructed automatically from external tools
such as a theorem prover or sets of hazard and requirement tables [3]. Such
safety case fragments often have inherent structure that could and should be
exploited to help comprehension.

Based on these observations, we propose to extend the GSN notation (which
we will simply refer to as safety cases from now on) to include hierarchical
structuring mechanisms. We call the these structures hicases, and claim that
they help to clarify the structure of a safety case and improve the quality of the
argument. The main contributions of this work are:

1. A theoretical description of GSN safety cases and an extension to this
model for hierarchical safety cases. In fact, we give two equivalent defini-
tions: one closer to an implementation.

2. We relate an unfolding of the hicases to an ordinary safety case by means of

AVNUMS 2y
Jo seseyd Bupesado
2 JoA0 LBy

1-16505L86N

@

4 ¢

potebyw

paIEBIIW SI AV LIMG PaIEBIIW 818 AV WS sauobeed pajebyiw 312 AV UIMS JO JUSWIUOIALD
10 {x A10Baye0 piezep) Z98-A1S-TIN Woly U Jo spiezey ainjiey 3isU pue sy ajqeydece S48 AV UIMS SU} Buyesado woy sprezer
piezel Jo uopiuyeq Jo uopue 10 spJezey Uolje.a)|

1-dALZeH AVNUIMS "D 1-£16898%8N 1-82862960N 1-2658556vN L-PSYBLSTEN 1-EV86090YN

AV
WIMG BU} 0 SalI0Bajed
piEzey |2 Jano
uoyeBAW J0 WeLING)Y

1-2258L90IN

< <

uojiejuawnoog UBseq O
pUE Ue)d juauieBeue s aie suooeian o s sucners e Rl
weyshsans ™ !
20 SVN HMS 15ASans SYN WMS e Swnus) L
15AS BUI0GIY
1-829€5/16N 1-YSSYEESN 1-088Y60L9N 1-2ZeEh 202N 1-012962N

swsishsans

UsBM}Eq SUOIDEISIUL
pue swejshsans

SV IIE J8A0 BBy

uogeisda jo (aig
pue uopeoo) sbuey

suoypuos
JEREEN

u
paypadg
1-b1E2L098N

1-2esp8S8IN

1-£8285008N 1-ZSBBL9VYN

2Jes S SV WMS

V-LL¥9LZieN

sajioBae:

(i

uogeinByuoo
paypadg

L-CLLBBEVEN

sishleue
pIezey AN WMS Buunp

0 peZey poynuap|

01GG96ZN

A safety case fragment for the Swift UAV

Figure 1

a skeleton operation as well as providing a natural embedding of ordinary
safety cases in hicases.

3. An implementation of hicases in the AdvoCATE tool, which we use to
provide the hicase examples in this work.

The rest of this report is structured as follows. In Section 2, we introduce
the GSN notation for safety cases in more detail. Then, in Section 3 we give
motivating examples of hierarchy based on the Swift safety case. Then, in
Section 4 we give a formal definition capturing the notion of safety case and
extend it to hierarchical safety cases. We provide alternative definitions in
Section 5 and describe our implementation in Section 6. Finally, we conclude
with related and future work in Section 7.

2 Goal Structuring Notation

The Goal Structuring Notation for safety cases, defined in [1], is fast becoming
a standard model for argumentation of safety cases. In this section, we give
a brief overview of GSN, but for a full description, we refer the reader to the
standard [1].

Safety cases are documented in a variety of ways, including text and graphi-
cal notations. For the safety case fragments given in this report, we use the Goal
Structuring Notation (GSN) [1] for documentation. The elements of the GSN
are shown in Figure 2. Each element represents a specific type of information
that is contained in the safety case. For example, a safety claim, i.e., a goal,
is shown using a rectangle. The strategy used to decompose this claim into
sub-claims is represented using a parallelogram, while sub-claims are again rep-
resented using rectangles. Assumptions, justifications and context information
are documented in the GSN using rounded rectangles and, respectively, they
convey the assumptions made, e.g., in stating a claim or using a strategy, the
justifications, e.g., for using a particular strategy, and the context of relevance,
e.g., when making a claim. Evidence is represented using a circle.

Whenever these basic elements' are either undeveloped, uninstantiated, or
both, a diamond shape, a triangle shape or a diamond shape with a horizon-
tal line, are respectively appended to the relevant element shape as shown in
Figure 2. Undeveloped elements refer to elements which have been identified
but not completely developed, i.e., it is known to be incomplete. Uninstanti-
ated elements refer to those elements which have not yet been identified but
are known or hypothesized to exist. Elements which are both undeveloped and
uninstantiated serve as placeholders for possible elements which can be added
into the safety case.

A safety case will always be rooted with a top-level goal: most often that the
system is safe, but it can be useful to relax this condition and consider partial
safety cases: which are sets of safety cases, that still need to be connected and

INote that some of the syntactical elements have been recently updated in the GSN, e.g.,
the notation for the “Model” has been eliminated.

<ldentifier> Constraint: <identifier>: Goal <ldentifier>: Context

e.g. Certification works on Source [~ e.g. the software satisfies all given P\ eg. The software consists of the
Level Representation Only requirements following modules 50hz.c, Att.c, VS.c

In context of

Is solved by

<identifier> Undeveloped
Strategy:

domitiors Model: <identifier> Strategy:

e.g. Argument based on

e.g. Argument based on testing software

proo of partial correctness
wrt. the given requirements

e.g. Hoare style program verification
using specific proof rules

<identifier>: Assumption

e.g. No requirement is used
as an Assumption

A <identifier>:
Undeveloped Goal <identifier>:

dentifi i Undeveloped and
<Identifier> Justification:
e.g. Test software for U"‘"Sé:';‘a'ed
e.g. SRS Inspection path coverage
J

<identifier>:
Undeveloped
Evidence

<Identifier>:
Evidence:

e.g. Axiom
transpose_matix

e.g. Path Test
Coverage

Figure 2: Syntax of the GSN notation

tied down to evidence. We can draw analogies between GSN diagrams and proof
trees. Strategies can be interpreted as tactics or inference rules; evidence nodes
can been seen as axiomatic strategies?. The context, assumption, and justifica-
tion nodes can really be seen as attributes to goals and strategies. Also, the core
GSN standard is very flexible: it doesn’t prescribe many syntactic restrictions
and no semantics. In this work, though, we utilise our definitions to restrict
the types of safety case that can be constructed to those that are sensible. The
core GSN standard is then extended with the basic infrastructure for modules.
Safety case modules are similar to their traditional programming language coun-
terparts and facilitate data-reuse as well as some degree of abstraction. Modules
are compared with our approach in Section 7.1.

3 Examples of Hierarchy

In this section, we present several examples of hierarchical safety cases. Our
examples are derived from the Swift safety case, which we have studied to find
motivating instances of ‘abstractable structure’, which we represent using hier-
archical nodes (or hinodes).

3.1 Abstract Evidence

Example 3.1 (Abstract Evidence). Consider the segment of a safety case taken
from the automatically generated part of the Swift safety case given in Figure 3.
This fragment of the safety case is generated using the AutoCert tool [7], and the

2The analogy is not complete. Goals in safety cases can, for example, have multiple
strategies solving them independently for extra assurance.

segment shown represents a direct proof of a verification condition for a software
module in Swift. A lot of the details of the proof are transformed into the safety
case, such as the theorem prover used, the name of the proof object etc, and we
may abstract away from this in the hierarchical presentation. A hierarchical
evidence node can be constructed. Inside it is the subproof rooted at the
ACI10 strategy: argument by proof using automated theorem provers. Since this
sub-argument is complete — that is, it has no remaining goals — it could be
understood abstractly as an evidence node. The hierarchical representation in
AdvoCATE is shown in Figure 4 with node HI. We call this the open view of
a hinode. We can view it as a black box — in the closed view — as shown in
Figure 5 where the advantages of abstraction become clear: we have simplified
the representation of the safety case with this presentation. As there are many
verification conditions, we have many instances of this structure; furthermore,
we iterate this procedure up to proof tree, offering opportunities for nested
hierarchy. Iterated abstraction could then greatly reduce the size of the safety
case when viewed.

3.2 Abstract Strategies

If, in the example above, we’d chosen a slice through a safety case where some
paths were not fully enclosed (or that is not fully developed), we would have an
abstract strategy node. The paths not fully embraced within the hinode can
then be considered as the subgoals of this node. A typical use of an abstract
strategy is to group together a meaningful chain of strategy applications. In an
analogy with tactical theorem proving, a composite tactic like INTROS, which
applies as many introduction rules to a goal as possible, could be seen as a
hierarchical strategy.

Example 3.2 (Abstract Strategies 1). Consider the safety case fragment (from
the middle of the Swift safety case) in Figure 6. It represents an argument about
correctness of the software system during the descent phase; however, the two
strategies arguing this can be grouped together as a single strategy: ‘Correctness
argument over architectural breakdown’. We can represent this as an abstract
strategy, which is shown (in the open view) in Figure 7. As with abstract
evidence, we can also close this node giving us the safety case in Figure 8.
It is important to note that the context, assumption, and justification nodes
are also enclosed within the hierarchical strategy. It would also be feasible to
exclude them (and connect to hinodes), but we decided that the hinodes would
be too cluttered in this view, although we could off this as an option in future
implementations.

Example 3.3 (Abstract Strategies 2). Abstract strategies can also be employed
to hide side-conditions (or trivial subgoals), by fully enclosing particular paths
of the safety case. This gives the developer (or viewer) the flexibility to only
concentrate on the important paths through the safety case during a cursory
viewing. If required, the hierarchical strategies could be opened to view the full
detail.

ACE

ap_frame_002_0

A1

Argument by proof
using automatad
theoram provers

AC12 AC14

Prover Vampira-

-0.6 The verification condition
ap_frame 002 0001 =
established by a proof

Figure 3: A fragment of an auto-generated safety case

Figure 9 shows a fragment of the Swift safety case, which argues the safety of
the auto-pilot design. The goals N61592954 and N7927263 have been considered
by the developer to be unimportant and, indeed, their justifications have already
been abstracted and closed. We wish to abstract this safety case to:

e Hide the unimportant goals within a hierarchical strategy.

e Also group the Strategy S2 to leave us with one outgoing subgoal: ‘the
specification for computing angle of attack is correct’.

The resulting hicase gives us our first instance of nested hierarchy and is
seen in Figure 10. The advantage of hierarchy for managing the size of safety
cases can be seen when this hierarchical strategy is closed, as in Figure 11. The

ACB

ap_frame_002_0
001

E | H2
Proof using¢\’an‘pina automated theorem prover

AC10
AC12

Argumant by proof

using automated
thearem provan

v

AC14

Pravar Vampire-
-0.6

The verification condition
ap_frame_002_0001 is
establishad by a proof

AC1E

Proof:
ap_frame_002._
0001

Figure 4: Constructing hierarchy as a new abstract evidence node

output goal, G3, is solved with a deep tree (of which only the first level is shown
here) which provides some evidence for its relative importance compared with
the other subgoals.

10

ACE

ap_frama_002_0

E

H2

Proof using the Vampire automated theorem prover

Figure 5: Viewing the abstract evidence node as a black-box node

N20288452

Software failures during
desoent are mitigated

4

NE30410501

Comectness
argument far
software system

Software system is free

N20265654

from failure

N41655649

Reflection System
Execution Layer

Na0410502

Argument aver

A
N18385040 [

N42138067
Common o
Graphics Library Reflaction virual

is comect

machine is comect

¢ ¢

(all softwara exacution
layers and components)

N84908075

Windows XP Embadded
08 behaves comectly

N76400477

Definition of comectness:
Implementation meets specification
and speification s valid

MEG237 1560

Reflection
system
components

NB1686052

Swift UAV Software
scripts are comect

(3

[

Figure 6: A safety case fragment, where we can group two strategy applications

11

N39322704

autapiot design
is comect

¢

Arguing and hiding sid

N54945405
NGENATE
Autopiot dass design

documantation Akt
breakdown of autapiot
functiona
N7927263
€1_soa_scc
Cument, previous and
NE1522054 next waypaints propery
G1 :
Definition of acceptabls value AP abject el
of accuracy for angle of atiack propary
Autopiot module accusately initiafized
calculstas comect angie of
attack
c2
Fommula for angie of
‘attack {Fight contral E H1 E Hz2
theory)
AP Obj Initalised Waypaints definad
2
Argumant that
computation i
comactly spacifod

¥

G3

The specification for computing
angle of attack is comact

55
S

Argument that comect
cafibation constant is.
used in the
specification

Argumant that the
comact formula is used
in the specification

&8
G7
The specification uses the
Ths cafibration constant usad comect farmula for computing
in the spacification s accurals angla of attack

Figure 7: A hierarchical strategy in the Swift safety case

12

MN2026B452

Software failures during
descent ara mitigated

S H1

Comectness argument over architectural breakdown

\

anlRlE N81666052 N84908075
M16368049 7 :
Camman Hoflochor il Swift UAV Softwars
Graphics Library conecE scripts are comect Windows XP Embedded
is comact 0E behaves comactly

> s S =

Figure 8: A hierarchical strategy in the Swift safety case, viewed as a blackboz

13

sEqE jo sibue
Buynduios 5o} enuso) PRCS
Bl s5n UDYEIYDETS BUL

S|RIN00E =1 LojEIYIS DS SU} LI
PBSN JUBISUDT UOGEIGHED BUL

18

80

pauysp sjurcdies pesgeEniul [ag dy
TH 3 IH 3
pazyem
pauep Auedosd
fpedoid sjmodiem xeu et

pue snomaid jussng

E9ZLZBIN

PSBE6SLIN

Apeungouny

Jopdone jo umopyesig

1840 JUBWINERY,

SLIGIERSN

uoqEsgsds sy} W
pesn s Ejnuuc) joauos
8L 1B JUBWNEY

¥

Joam0s = ¥oepe jo sbue
Bugnduweo ioj uogEaoeds BUL

EQ

uogeagoads
iy Ut pasn

1 JUEJSUDS LOGRIGEES
{8100 181 juswnBry

55

paypads Alaeucs
= uoyEnduwos
Jeug Juswnbry

@

|9au0a &
uBisap jopdoine

YOLEEEBEN

pEyE
Jo sfBue joauca sejEnoEs
fiseinase sinpow jopdoiny

323

D EjUBWRIOR
uBrsep ssep opdoiny

SOPIrEPSN

¥oENE 0 BBUR 10} A2BIN9%E O

anjen mgEjdacae Jo uouyeq

238" ROETLD

tisoauy
1enucs jybad) yoepe
10 B{BUE 0} EjnME0S

z3

sinpow
1opdoiny

2

Figure 9: An argument with two trivial subgoals (‘AP object properly initialised’
and ‘Current, previous, and next waypoints properly defined’), which can be

hidden

14

N3D322704

autopiiot design
is comact

@

Arguing over autopiot

N54948405

Autopiot class design

breakdown of autopiot

NGRIT17S

Argumant aver

N7927263

documentation Roncieatly
) _"’ Curent, pravious and
AF objact next waypointe prapary
propery dafined
initialized
G1
Dafinitian of accaptabia valie =
Autapilat module accuratsly
of accuracy for angle of aftack it it 3 =
attack E H2
AP Obj Initisfised
definad

c

Farmula for angla of

attack (Fiight control
theory)

2

P

Argument that
computation is
comactly specified

c1
Autopiot
module

v

G3

The spacification for computing
‘angle of attack is comsct

5

Asgument that comect
calibration constant is
used in the
spacification

T

Amgument that the

in the spacification

comact formuls is used

G&

ferg

The calibration constant used
in the spacification is acourate

Tha spacification uses tha
comact formula for computing
angle of attack

Figure 10: ‘Boxing up’ the trivial subgoals

15

N39322704

autopiiot design
is comect

b He

Arguing over piot funcionalty and hiding sid. difions

G3

The specification for computing
angle of attack is comect

=5 &=

Argument that the
comect formula is used
in the specification

Argument that comect
calibration constant s

used in the
specification
GT GE
The calibration constant usad The specification usaes the
in the spaecification is accurate comact formula for computing
angle of attack

Figure 11: When the hierarchical strategy is closed, the trivial subgoals are
hidden

16

3.3 Abstract Goals

By symmetry of strategies and goals, we have the dual notion of an abstract
goal. In our studies of real-life safety cases, this construct is not as common as
abstract strategies, but nevertheless it can be used to provide a high-level view
of the safety case. As a concrete example, consider this hierarchical ‘chunking’
of a safety case derived automatically from hazard and requirements tables,
Figure 12. We utilise hierarchical goals to group the functional requirements.

3.4 Case Studies

We have also performed case studies introducing structure on the full Swift
safety case. In particular, we have utilised hinodes to make clear the structure
of a detailed proof generated by AutoCert and make the argument structure of
the Swift safety case explicitly using hinodes. We describe both in the following
sections.

3.4.1 Aileron Correctness Proof

The AutoCert tool produced a very detailed proof of the correctness property
of the aileron control sequence in the autopilot. The proof proceeds by prov-
ing correct the individual computations that are performed in controlling the
aileron. The computation structure is shown in Figure 13. Previously, the proof
was very detailed and unreadable for humans. However, we were able to use
hinodes to hide the trivial side-conditions and make clear the architecture of
the proof. We show the top fragment of the resulting hicase in Figure 14. The
goal AC'1 represents proving the correctness of the Aileron control computed
variable in Figure 13. This is because the AutoCert proof is a backwards proof
common in automated theorem proving, where the stated goal is broken into
simpler sub-goals. The hierarchical strategy H16 performs this decomposition,
leaving a single output goal AC98, which states that we have to prove the de-
sired roll variable is correct (the next goal up in the computation structure) and
so the high-level proof continues with the next goal corresponding to the desired
heading variable. For an expert familiar with the system, the hierarchical safety
case makes it clearer that this sequence of computations is correct.

3.4.2 Swift High-level Structure

If we look at Figure 15, we see that it has a natural high-level structure. First the
argument proceeds by looking at the various sub-systems of Swift: the ground
station, the aircraft etc. Then, by arguing over the phases of operation, such
as Taxi, Cruise, Descent etc. For large safety cases, this inherent structure can
become almost completely obscured by the detail in the safety case; however, we
have experimented with hicases and discovered that it can be made clear through
the addition of hinodes. As an example, Figure 16 shows the hierarchical safety
case that we constructed to show the high-level structure. The hierarchical
evidence node, H56, details the proof technique and encloses the rest of the

17

Go

€101
HR.1.3

[Propuision system [>
hazards] is mitgated

Argument aver
identified hazards

possible

comectly identfied ta tha axtant

HE

/
i
=

Hazard Table Mitigated

&1
c14.1
[Incormact programmng af KD >
mater cantrobar] is mitg ated HR.1.3.7 i
c11.y
.
overheating] is > HR1.3.1
mitigated
2
/ al E X H3
/ Incaract Pragramming Hazards \ Motor Overmaating Hazards

Argument aver
identified causes

|2 Causes nave bean completaly and
comectly identified to the extent
passible

[improper procedures to check
programming before fght] is
managed

% —

l| Functional Requiremant Entry

v

G7

€73

[Engine software will be
checked during pre-
deployment checkout] haids

Pre deployment

7

RF.1.14.1.9

Predepioyment
checkist

Argument over
identified causes

possible

[Faiure during
operation] is managad

managed

¢

[“5 Causes have besn compietaly and
comectly dentified to the extent

Ffnetional Raguiramant Eniry

*

@5

€51

RF.1.1.4.12
[CPW/autopiot must be able
to monitor engine and motor
controller temperature] hoids

Engine Systems

{Taba
instantiated)

E2

Pre-fight
chackist

Figure 12: Hierarchical groupings for hazard table construction

18

Destination Waypoint

(M)

(dstWpPos) Current Position
| Line Intercept For (CurrACPos)
Xtrack (B)
Source Waypoint
(srcWpPos) | Line Slope for Xtrack

Current to Destination

A N

Vector (lineAC2Ds)

Source to Destination

CrossTrack Error
(PID.m_currentXTrackErr_rad)

y

CrossTrack Delta Heading
(PID.m_xtracksignal_deltaheading)

Vector (lineSc2Ds)

v

Key: (variable name)
PID = m_pidTarget
AD = AircraftData

Computed Input
variables variables

Desired Heading
(PID.m_desiredHeading_rad)

Current Heading
(AD.m_heading_rad)

|

Desired Roll
(PID.m_desiredRoll_rad)

Current Roll
(AD.m_roll_rad)

v

Aileron control
(m_aileron_m1p1)

Figure 13: Aileron computation structure (white portions)

19

NID50EE83

MNGE31ED1
Implamentation of PID d
oonh?ﬁat is comect for Alleron Requirement [LL-SR-001]: The
control varabls autopilot module shall comactiy

compute the alleron control varable

SAC Hiarmalizatan

Formalization using
AutoCert specification
language

AC1

output->m_aieron_mip1 has propery
dasired{aderon) {i.e. has_unitjoutput-
>m_aieron_m1p1, desirad{aideron)) holds.)

¥

S H16

Aderon subproof

| 2

ACTE

m_pidTargets->m_desiredroll_rad has
property desirad{roll) {i.e.
has_unit{m_pidTargets-=m_desiredroll_rad,
desired(roll)) holds.)

¥

S H17

Dasired Rofl Subproofs

+

AC204

m_pidTargets->m_desiredheading_rad has
property desired(heading) (i.e.
has_unit(m_pidTargets-
>m_desiredheading_rad, desired(heading))
halds.)

Figure 14: Hierarchical presentation of the aileron computation proof

20

Safety Claim

GSC, UAV, Comm | Sys/em Organization |

N N Taxi, Take-off, Cruise, Survey,
| Qﬁperatlng Phases \ Return-Cruise, Descent, Land

Drift outside range-safety area X
Autopilot failure | / Relevant Hazards | |

A

Autopilot, Actuators, a -
Sensors, ... | Subsystems / Corry{)onents | | Interactions |

Correct angle
of attack

Correct PID values a

\

| Sub-clain)é | | S/Jb—claims | | Sub-‘claims | ‘ SuB—cIaims ‘
Calibration Proof i \\ N
e , v , w_ Review Mo CoN :
i Evidence | | Evidence i Evidence | i Evidence : | Evidence |

Figure 15: Presentation of the argument structure of the Swift safety case

safety case. Then, each of H3—HG6, represent the hierarchical evidence nodes
that contain the proofs of safety for each individual system. The hierarchical
structure keeps the high-level structure visible.

3.5 Non-examples of Abstraction

There are restrictions on what can be abstracted inside a hinode. Firstly, to
preserve the well-formedness of safety cases we need to ensure that the input
and output node types are consistent. For example, a hierarchical strategy, like
in Figure 7, must have a goal as an incoming node and goals as outgoing nodes,
just like an ordinary strategy. We do not currently allow so-called strategicals,
which would mix the types of input and output, although we may in future
relax this restriction to allow for more compact hicases (since we can hide more
contiguous chains).

Furthermore, we cannot abstract disconnected fragments of a safety case as
there would be no path from the input goal to all the outputs. It is important
to note that this restriction does not force each hinode to have only one input.
The disconnectedness is with respect to the input, so multiple connections can
enter a hinode?.

Finally, we make the design decision to place any context, justification, and
assumption nodes inside the hierarchical safety case, thus hinodes cannot have
IsContextOf links connected to them.

3This property, desirable for a hierarchical node, is actually banned for non-hierarchical
nodes in our formal definitions (to follow); however, we believe that it makes sense for hierar-
chical strategies to combine ‘in parallel’.

21

N4467995

Weather
conditions

N86072314
Specified
Mission

N27216417
Swift UAS is

=i \

N80058283
Range (Location
and Site) of
operation

N2438817:

Specified
configuration

H56

Overall Swift Safety Argument by Breakliown Over Subsystems

N18584532
Argument over all
UAS subsystems

N91753638 and interactions

Swift UAS Design between
Management Plan and Subsystems
Design Documentation
NB83345544
Swift UAS
N20743322 N2946770 N67094880 subsystem
Airborne Swift UAS Swift Ground interactions are
system (Swift Communication stations are safe
UAV) is safe Infrastructure is safe <>
safe <>
E H6 E H5 E H4 E H3
JAirborne system safety [Comms Infrastructure. . Ground Station Safety Interaction Safety

Figure 16: Hierarchical Swift safety case, with only top-level node open

22

3.6 Summary

In this section, we have demonstrated informally where hierarchy can be intro-
duced and motivated the benefits. In summary, we have three different hinodes:

¢ Hierarchical strategies: abstracting a chain of related strategy applica-
tions.

¢ Hierarchical evidence: abstracting a fully developed chain of related strat-
egy applications.

¢ Hierarchical goals: abstracting a chain of goals.

Hierarchical strategies and evidence have been implemented in AdvoCATE
and hierarchical goals will in the near future. Hierarchical nodes are currently
constructed manually in AdvoCATE by choosing the input and outputs for a
particular node. If no output is that entire path is enclosed in the hinode. This
approach ensure there is no ambiguity about the limits of the hinode. Although
hinode construction is done by the user at present, we note that, especially in
Example 3.1, the hierarchical presentations can be constructed automatically by
any tool that is generating the safety case fragment. We would like to extend our
safety case generation tools to automatically construct hinodes at appropriate
locations. In the next section, we formalise the intuitions that we have given in
this section.

4 Safety Cases

In this section, we give a mathematical account of standard safety cases and
hierarchical safety cases by representing them formally as labelled tree — where
the labelling function distinguishes the types of nodes — subject to some intu-
itive well-formedness conditions. In fact, we give definitions for a partial safety
case* which can represent a safety case that is under construction.

4.1 Safety Cases

Definition 4.1 (Partial Safety Case). A partial safety case is triple (N, [, —),
consisting nodes, a labelling function, and a connector relation respectively. The
labelling function is [: N — {s,g,e,qa,j,c} gives the type of the node in the
safety case. The connector relation is defined on nodes: —: (N, N). We define
the transitive closure, —*: (N, N), in the usual way. We require the connector
relation to form a finite forest with the operation isrootn(r) checking if the
node 7 is a root in some tree®. Furthermore, the following conditions must be
met:

1. Each part of the partial safety case is rooted by a goal isroot 5 () = I(r) =
g .

4Corresponding to the core GSN model.
5Safety cases are the case where we have a single root.

23

2. Arrows only leave strategies or goals: if n — m, then I(n) € {s, g}.

3. Strategies cannot connect to other strategies or evidence: if n — m and
I[(n) = s, then I(m) € {g,a,j,c}.

4. Goals cannot connect to other goals: if n — m and I(n) = g, then [(m) €
{85 €, aaja C}'

By virtue of forming a tree, we ensure that nodes cannot connect to themselves,
that there are no cycles and, finally, that two nodes cannot connect to the same
child node®. Additionally, we see that the GSN standard’s requirement of two
arrow-types (IsSolvedBy and InContextOf) has no semantic content, but rather
provides an informational role.

Definition 4.2 (A goal-strategy restriction). The safety case (N',l;,,,—,/)
is a goal-strategy restriction of (N,l,—) where N’ = {n|n € N and l(n) €

{s.9,€}}.

That is, we remove the context, justification, and assumption elements. By
definition, these nodes are always leaves and alternatively could be understood
as attributes of the strategy and goal nodes. We also say that a (total, i.e.
unique root) safety case is fully developed if, for every goal n ie. I(n) = g, we
have g —* n’/, with [(n’) = e. That is, all paths lead to evidence.

4.2 Hierarchical Safety Cases

We define partial hierarchical safety cases, hicases, extend this model with an
additional relation representing the hierarchical structure. We’ll represent it as
a partial order symbol < where n < n’ means that the node n is inside n’. We
wish to define hicases in such a way that we can always unfold all the hierarchy
to regain an ordinary safety case. Thus:

Definition 4.3 (Hicases). A partial hierarchical safety case is a tuple (N,[, —
, <). The set of nodes and labelling function are as above. The forest (N, —)
is subject to the same conditions as Definition 4.1. The hierarchical relation
fulfills the axioms of a partial order and can thus also be viewed alongside N
as a forest. Finally, we impose conditions on the interaction between the two
relations:

1. If v is a local root (using —) of a higher-level node w (i.e. v < w), then

g Hlw)=gAV <wst. v —=v"and v’ £ w=11")=s

s ifl(v) =sAVV <wst. vV =0 and v Lw=10v")=g

e ifl(v) =sA P <w, v £ wst. v — v and the subtree
rooted at v is fully developed

6This last condition (two nodes can’t have the same child) is actually a restriction of the
GSN standard, which doesn’t explicitly disallow this, but we believe this to be reasonable
property to have.

24

2. The connectors will target the outer nodes: v — w; and w; < wy then
v < Ws.

3. Connectors come from inner nodes: if v — w; and w; < ws then v = wy.

4. Hierarchy and connection are mutually exclusive: v < w and v —* w
means v = w.

5. two nodes which both at the top level (or immediately included in some
node) means at most one has no incoming — edge. That is:

siblings;(vy,ve) N isroots(vy) Aisroots(vy) = vy = vs.

The first condition above formalises our intuition that a hierarchical strategy
must take goals as an input and return goals as an output, hierarchical evidence
must have no outputs and enclose a fully-developed safety case, and hierarchical
goals must take strategies as inputs and outputs. We phrase it in terms of the
immediately enclosed items: that they must be of the same type as the hinode.
Hierarchical evidence is subject to stricter conditions: it must not have any
outputs and the safety case it encloses must be fully developed. We can view
abstract evidence as an abstract strategy without outgoing goals just as evidence
is an axiomatic strategy.

The latter conditions (2-5)7, are designed to produce a mapping from a
hierarchical safety case to its ordinary safety case unfolding: its skeleton. We
show below that safety cases can be viewed as (trivial) hicases and that the
skeleton operation unfolds into an ordinary safety case

4.3 Relating Safety Cases and Hicases
4.3.1 Safety Cases as Hicases

Before defining the more complex transformation of a hicase into its skeleton we
briefly note that a safety case (IV, 1, —) can be mapped to a hicase (N, [, —, idy)
where ¢dy is the trivial partial order with only reflexive pairs. This ordering
trivially satisfies all the well-formedness properties of a hicase.

4.3.2 Skeleton of a Hicase

We define an operation sk, mapping hicases into ordinary safety cases and show
that the tuple it constructs is indeed well-formed w.r.t the safety case conditions.

Theorem 1 (Skeleton). The operation sk which maps a hierarchical safety case
(N,l,—,<) to (N',l',="), where N' is the set of leaves of <, I’ is the restriction
of the labelling function I, and v —' ve iff Jw € N such that vo < w and v, —
w maps a well-formed hierarchical safety case to an ordinary safety case.

"These are identical to the well-formedness conditions for Hierarchical Proofs (or hiproofs)
that inspired this work [8]. For more discussion about hiproofs, see Section 7.1.1.

25

Proof sketch. The relationship between Hiproofs and Hicases (as well as
the corresponding relationship between safety cases and proofs) allows us to
claim that the mapping constructs the appropriate forest structure on (N’, —').
We simply need to show that the well-formedness conditions 2-4 of Definition 4.1.
Condition 2, for example, (if v; — vq then I(v1) € {s, g,€}) comes for free since
if v1 — w then it already has this property for v; —' vs.

4.4 Extending the Core GSN Model

As discussed in Section 2, the core GSN model is often extended with entity
abstraction annotations — which can state if a node is undeveloped or uninstan-
tiated — and with patterns and modules®. Additionally, the AdvoCATE tool
extends the GSN node notion to include some meta-data about risk, whether
the property is a high-level or low-level requirement etc which can, for exam-
ple, influence the colour of a node. Our core definition of a safety case can
be extended to store this detail by considering our node set N as a record,
with various projections. As an example, here we simply implement the entity
abstractions, with predicates: isundev(N) and isuninst(N)°.

Our interest in these extensions comes from their interaction with the hi-
erarchical structure: the hinodes must also have a developed and instantiated
attribute and it must be consistent with its contents. We ensure this consis-
tency by providing well-formedness rules connecting the hinode property and
its child properties. However, since we do not want to fix the attributes avail-
able, we instead give schemas for consistency rules. The general structure is as
follows:

fp(vi, .. vn,m)
p(n)
By this, we mean that a property holds (or has a particular value) if a

function of it and it all the contained nodes also has that value. We illustrate
this schema with the undeveloped property:

Vi <n

(undev(vy) ANl(v1) =1(n)) V...V (undev(v,) Al(v,) = 1(n))
undev(n)

Vi <n

That is, a hinode is undeveloped if any of its contained nodes (of the same
type) are also undeveloped.

4.5 Viewing the Hierarchy

It can also be useful to view the hierarchical relation as a tree in its own right.
This presentation makes explicit the nesting structure of the individual hinodes:

81n fact, the undeveloped entity abstraction is part of the core GSN, but we didn’t include
it in our original definition for simplicity.

9We are cheating a little. Technically, only goals, strategies, and evidence can be ab-
stracted. We assume that contexts, assumptions, and justifications always have these predi-
cates false.

26

which hinode is enclosed by which other hinode. Figure 17 shows an example
of this hierarchy tree for the hicase in Figure 10. The definition of the hierarchy
tree is simply a pair (N, <;_,). That is, all the nodes in the hierarchy that are
not leaves. This is precisely the hinodes as no other types of nodes are allowed
to contain elements.

W7

Arguing over autopiol functionality and hiding side-conditions

R S "

H1 H2

AP Obj Initiaksed Waypoints defined

Figure 17: A presentation of the hierarchy of a safety case

5 An Implementation-focussed Definition

We have implemented hicases in AdvoCATE, which was designed using a dif-
ferent, but equivalent, definition of a safety case'®. Assuming that we have
finite, disjoint sets of goals (G), strategies (S), evidence (E), assumptions (A),
justifications (J) and, contexts (K), we give the following definition.

Definition 5.1 (Partial Safety Case: Type 2). A partial safety case, G, is a
tuple
<G7 S? E7 A7 ']7 K7 897 gs, gc, ga, gj, Sa, SC, sj>

with the functions:

e 59: 5 — P(G), the subgoals of a strategy;

10This is a slightly revised definition to that given in [3]. We have restricted each
goal/strategy to have one input strategy/goal and generalised what can be attached to goals
to also include assumptions and justifications.

27

e gs: G — P(SUE), the strategies and/or evidence of a goal;
e gc: G — P(K), the contexts of a goal;
e ga: S — P(A), the assumptions of a goal;

(
o gj: S — P(J), the justifications of a goal;
e sa:S — P(A), the assumptions of a strategy;
e sj: 5 — P(J), the justifications of a strategy;
e sc: S — P(K), the contexts of a strategy.
With the properties:

¢ Each goal has only one input strategy. That is, for every g € G if g € sg(s)
and g € sg(s’) then s = ',

¢ Each strategy has only one input goal. That is, for every s € S if s € gs(g)
and s € gs(g’') then g = ¢'.

We say that ¢’ is a subgoal of g whenever there exists an s € gs(g) such that
g € sg(s). We can then define the descendant goal relation, g — ¢’ off ¢’ is a
subgoal of g or there is a goal ¢” such that ¢ — ¢’ and ¢’ is a subgoal of ¢"’". We
require that the — relation is a DAG with roots R. We define a similar relation
for sub-strategies, including evidence as an axiomatic strategy. For simplicity,
we overload the same symbol.

Translating Between Definitions. We can define a mapping from safety
cases (which we will call type-1 safety cases) to type-2 safety cases and vice
versa. This mapping has the property that it preserves node connections and
well-formedness conditions for either definition. Informally, we can map a safety
case of type-2 to a safety case by collapsing the node sets and constructing
the labelling function in the obvious way: if n € G in the type-2 safety case,
then I[(n) = g in the type-1 safety case. We construct the connector relation
by flattening the target power sets for each function. The resulting structure
satisfies the properties in Definition 4.1.

In the other direction, we can translate a type-2 safety case to a type-1 safety
case by means of a partition of the node set N using the labelling function. We
can then construct each mapping function by partitioning the connector, again
using the labelling function.

5.1 Hierarchical Extension

Formally, we extend the type-2 description of a safety case to include a set H of
hinodes, finite and disjoint from the other node types. Thus, we extend a safety
case as follows:

28

Definition 5.2 (Hierarchical Safety Case). A partial hierarchical safety case,
g, is a tuple:

(G,S,E,A,J, K, H, sg,gs, gc, ga, gj, sa, sc, $j, hi, ho),
extending hicases with the additional functions:
e hi: H — @, the input goal of a hinode;
e ho: H — P(G), the set of output goals of a hinode.
We ensure that the following properties about the hierarchical links hold:

1. Inputs and outputs are connected: V h € H, if g, € ho(h) and hi(h) =
Yin then gin — Gout-

2. Outputs are disconnected: Vg1, g2 € ho(h), g1 — g2 = g1 = ¢2.

3. Hinodes cannot overlap: if hy,he € H and hi(hy) — hi(hs) then for
every g € ho(hy) such that hi(he) — g we must have ¢’ € ho(hg) such
that ¢ — gn,. We say hy encloses hs.

4. Additionally, if hi(h1) = hi(h2) then either for every g € ho(hl) there is a
g’ € ho(h2) such that ¢’ — ¢ or for every g € ho(h2) thereis a ¢’ € ho(hl)
such that ¢’ — g. That is, one must wholly enclose the other.

Note that the complicated property about overlapping comes for free in our
partial order version of this definition. Intuitively, the overlap property basically
says that every pair of hinodes must either be independent or any interaction
must be a complete nesting. For example, in Figure 18 we cannot construct
a hinode containing S2 and S3 only, because that would break the overlap
property since that hinode, let’s call it H2 would require hi(H2) = G2 and
ho(H2) = {G4}. But, since G1 — G2 and ho(H1) = G3 and hi(H2) — G3
we trigger the condition so we must have an element, g, of ho(H2) such that
g — G3 but this is not the case as the only output of H2 is G4. Graphically,
we see that this would mean the hinodes would intersect.

We highlight two special cases of hicases:

e When ho(h) = {}, the hierarchical strategy becomes a hierarchical evi-
dence node. That is, it encompasses the rest of the safety case tree rooted
at hi(h).

¢ For a hierarchical strategy h, with hi(h) = g and
ho(h) ={¢'| ¢ is a subgoal of g }

the hierarchical strategy is degenerate. It only covers one strategy.

29

G1

Figure 18: A hicase with the potential for overlapping hierarchy

30

6 Implementation

We have implemented hicases in AdvoCATE, providing basic features for con-
structing, modifying, and viewing hinodes. For a complete description of the
features of AdvoCATE, we refer the reader to [5]. The main hierarchical features
provided are:

¢ The ability to modify an existing safety case to add hierarchical structure;
¢ Two ways to view hierarchical objects: an open and closed view'!;

o The ability to modify the contents of a hierarchical safety case: abstracting
more or less of the safety case;

¢ The ability to view a tree representation of the hierarchical structure.

In this section, we show how each of these features can be used, based on a simple
safety case, which we have constructed as an exemplar, given in Figure 19. It
is fully developed and the root goal is G1. First the strategy S1 breaks G1 into
two simpler goals: G2 and G3. G3 is solved directly using an evidence node
(E1) and G2 requires an additional strategy application.

6.1 Creating Hierarchical Nodes

In order to create a hierarchical node, the user will select the goals (in the case
of constructing a hierarchical strategy) that they wish to delimit the hinode
from outside. Once selected, the user can use the ‘Abstract Nodes’ feature to
construct the hinode. The selected nodes are used to construct the h: and ho
functions in Definition 5.2. The set of nodes is analysed to ensure that:

e One node is suitable as an input: that is, there is a path from it to all
other nodes;

o All the other nodes (the outputs) are disconnected,;
¢ This new hinode will not overlap with any pre-existing strategies.

Once the well-formedness checks are performed, the node is created in the
open view, with no description and coloured green by default. The user can then
click to add a meaningful name to the hinode. If, for example, the user selected
G1 and G4 as the delimiting goals, then the resulting safety case is shown in
Figure 20. Note, that in accordance with the interpretation the non-selected
path is completely enclosed. In this open view, all the details of the safety case
are seen within a hierarchical box.

11 Actually in the implementation we provide three, but only two are available in the inter-
face.

31

G1

G2 G3
G4

Figure 19: Original safety case in AdvoCATE

32

G1

Figure 20: Safety case with hierarchy created

33

6.2 Viewing Hierarchical Details

The default view for a hinode is called the open view. In this view we dis-
play both the hinode and its contents, with incoming links going directly to
and from the enclosed nodes. We offer one core additional view: the closed
view, which is where all the contained nodes are hidden and the only links
shown are the hierarchical links. It is in this view that we see the advantages
of hierarchical structure: since the resulting diagram contains fewer visible el-
ements, it becomes easier to view. Additionally, there is also a view that we
call the flat representation of a hierarchical node. This view can be considered
as the raw representation of the definition: with both hierarchical links and
non-hierarchical links visible.

Nested hierarchical nodes will be visible only when their parent hinode is in
the open state and nested hinodes have their states preserved when a parent
hinode is modified. Since the opening and closing of hinodes affects their size
and shape, the system will automatically re-layout the changed parts of the
diagram. This is necessary, particularly when the diagram becomes large, in
order to ensure that nodes are not accidentally hidden.

6.3 Modifying a Hinode

Once a hinode has been created, we may wish to change its contents. It can be
modified in three atomic ways!'?:

e We can delete it entirely;
¢ We can enclose less;
e We can enclose more.

We provide a delete operation for hinodes, which will remove the hinode
and place all its contents at the level directly below (which is where they would
have been had the hinode being deleted not existed).

In order to change the contents of a hinode, we need to change either the
input goal or the set of output goals. We have not yet implemented this be-
haviour but it is expected that the user can click and drag goals in and out of
a hinode. The tool will then calculate whether such a move is legal (preserving
the well-formedness conditions for hicases) and perform the change. As a simple
example: consider the hicase in Figure 20. If we wanted to remove G3 and El
from the hinode H2, we could click and drag G3 outside the hinode.

7 Conclusions
In this report, we have introduce hierarchical safety cases as an approach to help

improve maintainability, understandability, and checking of safety cases. We
first motivated the work with examples derived from real safety cases then gave a

12Note that only the delete fragment is fully implemented at present.

34

theoretical account of the GSN notation for safety cases before extending it with
a hierarchical interpretation. We then described our prototype implementation
of hierarchical safety cases in the AdvoCATE safety case editor. In this section,
we highlight some important related work and hint at directions for future
development of our work.

7.1 Related Work and Concepts
7.1.1 Hiproofs

Hiproofs, introduced in [8], are the immediate inspiration for hicases. In particu-
lar, we follow the hiproof notation for the graphical representation of hierarchical
nodes. Hiproofs could be viewed as a more general model (for hierarchical trees)
than safety cases, without the particular node typing present in hicases. An al-
ternative understanding would be to consider a hiproof as the strategy/evidence
subset of the hicases representation (where goals flow is represented by the con-
nections). Hiproofs are simplifications of proof trees in real-life systems (which
often consist of meta-data), being intended for theoretical study of proof sys-
tems. This contrasts slightly from our approach as we also attempt to account
for meta-data in our definitions.

7.1.2 Safety Case Modules

Safety cases have a built-in module system, which is described in [1, 9]. As in
programming languages, the module system is designed to allow reuse as well as
limiting the changes required to the safety case when a particular aspect of the
underlying system is changed. Part of the motivation for safety case modules
lies in the movement in industry towards more modular systems. Safety case
modules are designed to naturally represent modular systems. Modular safety
cases can be easier to understand and justifiably add some hierarchical structure
to a safety case, so we offer a comparison here. We must be clear, though, that
we do not claim to subsume the features of modules with hicases; rather, we see
these as being complementary.

A closed hierarchical goal can mimic the appearance of an away goal refer-
ence (and many of them); however, there is an important difference: the away
objects are simply references to a separate safety case fragment; whereas, for hi-
erarchical goals, it is simply an additional node enclosing structure that is there
(and is also repeated if existing more than once in a safety case). Additionally,
hicases offer the notion of a hierarchical strategy — an enclosure of (possibly)
a complex (unfinished) safety case fragment — which does not have an equiva-
lent notion in the module system. Modules, however, cannot be nested in the
way that hicases can, thus offering only one abstract view. Additionally, one
can see the module system as working at a larger level: a module is typically a
large segment of a safety case, but we view hinodes as being viable at all scales.
Modules also have informal contracts that they must fulfill to be well-formed,
but hinodes do not enforce any semantic properties.

35

7.1.3 Hierarchy in Safety Cases

Hierarchical safety cases have been proposed before, in [11], where Stone pro-
posed and built a hierarchical presentation of a safety case for a frigate up-
grade. In this safety case, hierarchy was represented simply by indentation in
the spreadsheet safety case and showed the basic hierarchical decomposition of
the safety case: arguing over subsystems, hazards etc. In our terminology, we
would say they can only construct abstract evidence. Their tool doesn’t offer
the flexibility of abstraction given by abstract strategies. In fact, Denney et al.
have also presented a tabular formulation of safety cases in [6] and it would be
interesting to see if we could extend it to represent hierarchical safety cases.

7.2 Future Work

We address the avenues for future work in the theoretical account of safety cases
and in further development of AdvoCATE separately.

7.2.1 Hicases Development

There are a few possible threads for future development:

Extending the Hicases Definitions Our current definition for safety cases
and hicases only accounts for the core GSN language and potential meta-data
extensions. Most safety cases in practice make use of either (or all) of the modu-
lar extension to safety cases and the pattern language for safety cases. We would
like to give an account for each of these within our model. The module lan-
guage, in particular, would require careful thought to ensure no inconsistencies
are introduced. Additionally, we would like to further explore our definitions
for hicases and formally relate the two hierarchical definitions that we currently
have!3. A detailed account of the skeleton operation is also required.

We have not carefully considered assumptions and contextual nodes. Check-
ing the consistency of assumptions and contexts is an important part of (man-
ually) verifying a safety case. This can be a difficult and confusing task, par-
ticularly with large safety cases, since assumptions and contexts for a goal are
inherited from their parents. It would be fruitful to provide a clear under-
standing to these notions. In particular, we could formalise contexts, which will
allow us to transform contexts/assumptions. One possibility is to provide a for-
mal logic (propositional should be expressive enough) for writing assumptions,
then giving some logical rules describing how context and assumption lists are
propagated.

We would also like to investigate the formal notion of a hicase view: a slice
through the hierarchy which is actually a normal safety case; and, refinement
of hicases: providing a mathematical meaning for well-formed changes to the
hicase. Both of these exist informally in the implementation and it is important
to capture it formally.

13We believe them to be equivalent, but have not yet proved it.

36

Hierarchy Construction via Patterns Safety cases are often developed
for patterns: commonly used specifications for safety case fragments. Given
input data — from a requirements table, for example — the pattern can be
instantiated to a safety case fragment. We can extend the safety case pattern
language to also contain hierarchical constructs. In particular, we can contain
the whole pattern in a hierarchical structure. For example, this pattern can be
enclosed in a hierarchical goal structure that explains that this section of the
safety case provides the hazard decomposition. In this way, the hierarchy can
be seen as providing a record of pattern instantiation.

We would like to give an account for pattern instantiation. One interesting
possibility is to provide a term language for writing patterns. These terms,
when applied to an input could evaluate (possibly partially) to construct safety
cases. This approach is loosely analogous to writing tactics to construct proof
trees and we could look to the hitac tactic language for hierarchical proofs [2].

Extending Existing Safety Case Tools We plan to extend our existing
tools for automatically constructing safety cases so that they can construct
hierarchical safety cases. For example, we could extend the AutoCert tool to
construct a hicase like we presented in Section 3.4. Denney et al. also developed
a tool for constructing safety cases from sets of hazards and requirements tables
[3]. Again, this tool could be usefully extended to construct hicases.

Utilising Meta-data for Hierarchical Presentation An example applica-
tion of hierarchy is to give a method to highlight different technical regions of
a safety case. For example, we could specify an argument, within an abstract
strategy or goal, as requiring an avionics expert to verify correctness of the ar-
gument. The EGSN model, however, has a concept of meta-data which can be
used to annotate nodes. We plan to investigate in the future what potential
consequences for hierarchy this can have. It can certainly help deal with regions
requiring an expert verification. Additionally, meta-data could help provide
information for a Google maps-style view of a safety case: where major goals
(cities) are visible when zoomed out and gradually more detail is fleshed out!4.

7.2.2 Improving AdvoCATE

There are many interesting avenues for future development of the AdvoCATE
tool: our prototype implementation has really only scratched the surface. Here,
we confine ourselves to the developments specifically related to hierarchy. Most
immediately required are interface modifications (and the required changes will
become clear with use) to improve the users experience with hierarchical proof.
Currently, for example, the laying out algorithm does not behave optimally
for presenting hierarchical nodes and (minimal) manual adjustment is typically
required.

4 Buggy versions of this may be known as the Apple Maps view.

37

Firstly, we wish to utilise the meta-data that is central to the system. Cur-
rently, hinodes can be manually annotated, but we would like to be able to derive
this data from the enclosed elements. For example, we can mark a hinode as
uninstantiated if any of its elements are uninstantiated. Secondly, we would
like to utilise AdvoCATE’s transformation system, described in [5], to collect
information about hierarchy and possibly learn potential hierarchical structure.
For example, one might be able to notice and abstract patterns from existing
safety cases. Finally, we would like to implement the hierarchical patterns that
have been discussed above.

38

References

[1]

2]

GSN community standard version 1. Technical report, Origin Consulting
(York) Limited, 2011.

David Aspinall, Ewen Denney, and Christoph Liith. A tactic language for
hiproofs. In Proceedings of the 9th AISC International Conference, the
15th Calculemus Symposium, and the 7th International MKM Conference
on Intelligent Computer Mathematics, pages 339-354, Berlin, Heidelberg,
2008. Springer-Verlag.

Ewen Denney and Ganesh Pai. A lightweight methodology for safety case
assembly. In Frank Ortmeier and Peter Daniel, editors, SAFECOMP, vol-
ume 7612 of Lecture Notes in Computer Science, pages 1-12. Springer,
2012.

Ewen Denney, Ganesh Pai, and Ibrahim Habli. Perspectives on software
safety case development for unmanned aircraft. In Robert S. Swarz, Philip
Koopman, and Michel Cukier, editors, DSN, pages 1-8. IEEE Computer
Society, 2012.

Ewen Denney, Ganesh Pai, and Josef Pohl. AdvoCATE: An assurance case
automation toolset. In Frank Ortmeier and Peter Daniel, editors, SAFE-
COMP Workshops, volume 7613 of Lecture Notes in Computer Science,
pages 8-21. Springer, 2012.

Ewen Denney, Ganesh Pai, and Josef Pohl. Formal verification methodol-
ogy for automated construction of software safety cases. AFCS Milestone
Report SSAT.1.3.VVF(CS.4.05V.4.51.12.03, NASA Ames Research Center,
Apr. 2012.

Ewen Denney, Ganesh Pai, and Josef Pohl. Heterogeneous aviation safety
cases: Integrating the formal and the non-formal. In 17th IEEE In-
ternational Conference on Engineering of Complex Computer Systems
(ICECCS), Paris, France, Jul. 2012.

Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A hierar-
chical notion of proof tree. Flectr. Notes Theor. Comput. Sci., 155:341-359,
2006.

Tim Kelly. Concepts and principles of compositional safety case construc-
tion. Technical Report COMSA /2001/1/1, University of York, 2001.

Kevin Kinsella. UK offshore safety lessons learned. ERM Risk Practice.
SPE Seminar, Houston, TX, 2010.

Gordon Stone. On arguing the safety of large systems. In Tenth Australian
Workshop on Safety-Related Programmable Systems, volume 162 of ACM
International Conference Proceeding Series, pages 69-75, 2006.

39

