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Hidden connections between regression models of wind tunnel strain–gage
balance calibration data are investigated. These connections become visible
whenever balance calibration data is supplied in its design format and both
the Iterative and Non–Iterative Method are used to process the data. First,
it is shown how the regression coefficients of the fitted balance loads of a force
balance can be approximated by using the corresponding regression coefficients
of the fitted strain–gage outputs. Then, data from the manual calibration of the
Ames MK40 six–component force balance is chosen to illustrate how estimates
of the regression coefficients of the fitted balance loads can be obtained from the
regression coefficients of the fitted strain–gage outputs. The study illustrates
that load predictions obtained by applying the Iterative or the Non–Iterative
Method originate from two related regression solutions of the balance calibration
data as long as balance loads are given in the design format of the balance, gage
outputs behave highly linear, strict statistical quality metrics are used to assess
regression models of the data, and regression model term combinations of the
fitted loads and gage outputs can be obtained by a simple variable exchange.

Nomenclature

a0, a1, a2, · · · = regression coefficients of the forward normal force gage output (Iterative Method)
AF = axial force
b0, b1, b2, · · · = regression coefficients of the aft normal force gage output (Iterative Method)
c0, c1, c2, · · · = regression coefficients of the forward side force gage output (Iterative Method)
C1 = square matrix; used by the load iteration process
C2 = rectangular matrix; used by the load iteration process
d0, d1, d2, · · · = regression coefficients of the aft side force gage output (Iterative Method)
e0, e1, e2, · · · = regression coefficients of the rolling moment gage output (Iterative Method)
f0, f1, f2, · · · = regression coefficients of the axial force gage output(Iterative Method)
F = part of matrix G that contains loads
G = load matrix
H = part of matrix G that contains absolute value and non–linear terms
i = load iteration step index
N1 = normal force at the forward normal force gage of the balance
N2 = normal force at the aft normal force gage of the balance
R1 = electrical outputs of the forward normal force gage
R2 = electrical outputs of the aft normal force gage
R3 = electrical outputs of the forward side force gage
R4 = electrical outputs of the aft side force gage
R5 = electrical outputs of the rolling moment gage
R6 = electrical outputs of the axial force gage
RM = rolling moment
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S1 = side force at the forward side force gage of the balance
S2 = side force at the aft side force gage of the balance

β0, β1, β2, · · · = regression coefficients of the aft normal force (Non–Iterative Method)
γ0, γ1, γ2, · · · = regression coefficients of the forward side force (Non–Iterative Method)
δ0, δ1, δ2, · · · = regression coefficients of the aft side force (Non–Iterative Method)
ΔR = delta gage output vector or matrix
ζ0, ζ1, ζ2, · · · = regression coefficients of the axial force (Non–Iterative Method)
η0, η1, η2, · · · = regression coefficients of the forward normal force (Non–Iterative Method)
μ0, μ1, μ2, · · · = regression coefficients of the rolling moment (Non–Iterative Method)
ξ = index of regression coefficient of a dominant regression model term
ρ = index of regression coefficient of a dominant regression model term
σ = index of regression coefficient of a dominant regression model term
φ = index of regression coefficient of a dominant regression model term
ψ = index of regression coefficient of a dominant regression model term
ω = index of regression coefficient of a dominant regression model term

I. Introduction

Different analysis approaches are used in the wind tunnel testing community to predict balance loads
from measured strain–gage outputs during a wind tunnel test. One group of analysts, for example, processes
balance calibration data by first fitting strain–gage outputs of the balance as a function of the applied balance
loads. In that case, an iteration scheme is needed so that balance loads can be predicted from measured
strain–gage outputs during a wind tunnel test. This analysis approach is called the Iterative Method (see
Refs. [1], [2], and [3] for more detail).

In principle, the balance calibration experiment defines loads as independent variables and gage outputs
as dependent variables. Some analysts prefer to switch the independent and dependent variables that the
balance calibration experiment defines. This alternate analysis approach is called the Non–Iterative Method.
In this case, no iteration is needed to predict loads from gage outputs during a wind tunnel test because the
applied loads are directly fitted as a function of measured gage outputs (see Ref. [4] for more details).

Regression models used by the Iterative Method and Non–Iterative Method are derived from the same
balance calibration data set. Therefore, in theory, they should contain the same information about the
behavior of the balance even though, in one case, gage outputs are fitted as a function of balance loads
and, in another case, balance loads are fitted as a function of gage outputs. The present paper studies the
relationship between the regression models of the two fundamentally different analysis approaches in more
detail as the balance characteristics themself must be contained in (i) math terms that are selected for the
regression analysis and (ii) the sign and magnitude of the regression coefficients.

In general, it is recommended to process a balance calibration data set in its “design” load format. In
other words – a force balance should be analyzed in force balance format, or, a moment balance should be
analyzed in moment balance format. Then, the primary sensitivities of all gages of the balance exist (see
Ref. [5] for more details). This characteristic also means that, in an ideal case, the gage outputs of single
gage loadings are located along a straight line when plotted versus the corresponding single gage loads (a
single gage loading is a setup during the calibration of a balance that applies a single load component to the
balance while simultaneously keeping the magnitude of all other load components close to zero). The gage
outputs of the remaining combined loadings will also be in the vicinity of this straight line.

Figure 1, for example, shows the output of the forward normal force gage of a force balance plotted
versus the forward normal force. Both single gage loadings and combined loadings are depicted. It can be
seen that the gage output is more or less proportional to the corresponding primary gage load. The required
constant of proportionality is the inverse of the primary gage sensitivity of the gage. Therefore, a math
model term combination selected to fit gage outputs as a function of balance loads could also be used to
approximate the fit the corresponding primary gage load as a function of the gage outputs (and vice versa).
It is only required to switch primary loads and gage outputs in the related regression models.

Now, the following question emerges: Can a direct connection between the coefficients used by the
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regression model of the Iterative and Non–Iterative Method be established if the primary loads and gage
outputs are switched in the related regression models? Let us assume that the answer to the question is
“yes.” This means that the final balance load prediction accuracies of the Iterative and the Non–Iterative
Method are more closely linked than a casual observer would suspect. It would also help users of the Iterative
Method to gain confidence in the load prediction accuracy of the Non–Iterative Method (and vice versa).

First, in order to find an answer to the question posed in the previous paragraph, basic elements of
the Iterative and Non–Iterative Method are reviewed for a typical force balance. Then, using a calibration
data set of a force balance as an example, the connection between the regression coefficient sets will be
investigated in more detail.

II. Balance Calibration Data Analysis Methods

A. Iterative Method
This section describes the balance calibration data analysis assuming the Iterative Method is applied

to a force balance. Basic elements of the method are discussed in great detail in Ref. [1]. Therefore, only
an abbreviated description of the application of the method to a force balance is given in this section. In
principle, the Iterative Method is a two step process. First, gage outputs are fitted as a function of calibration
loads. Then, the regression coefficients of the gage outputs are used to construct a load iteration process so
that balance loads can be predicted from measured gage outputs during a wind tunnel test.

Data from the calibration of a force balance may be used to illustrate the application of the Iterative
Method. It is assumed that (i) data of a six–component force balance is analyzed and that (ii) the loads are
given in force balance format. Therefore, the regression models of the six gage outputs can be expressed as
a function of the balance loads using the following equations:

R1 = a0︸︷︷︸
intercept

+ · · · + aξ ·N1︸ ︷︷ ︸
dominant

+ · · · (1a)

R2 = b0︸︷︷︸
intercept

+ · · · + bρ ·N2︸ ︷︷ ︸
dominant

+ · · · (1b)

R3 = c0︸︷︷︸
intercept

+ · · · + cσ · S1︸ ︷︷ ︸
dominant

+ · · · (1c)

R4 = d0︸︷︷︸
intercept

+ · · · + dφ · S2︸ ︷︷ ︸
dominant

+ · · · (1d)

R5 = e0︸︷︷︸
intercept

+ · · · + eψ ·RM︸ ︷︷ ︸
dominant

+ · · · (1e)

R6 = f0︸︷︷︸
intercept

+ · · · + fω ·AF︸ ︷︷ ︸
dominant

+ · · · (1f)

The above equations highlight the fact that the regression model of each gage will be dominated by the
influence of the primary gage load. Now, the six balance loads need to be computed iteratively after the
completion of the regression analysis. The following iteration equation in combination with a load iteration
process may be used for that purpose (see Ref. [1] for a description of the iteration process):

F
i

=
[
C

−1

1 ΔR
]

︸ ︷︷ ︸
constant

−
[
C

−1

1 C2

]
· H

i−1︸ ︷︷ ︸
changes for each iteration step

(2)

Equation (2) is a matrix equation. Two matrices used in Eq. (2), i.e., C1 and C2, are derived from
the regression coefficients of the gage outputs that are defined in Eqs. (1a) to (1f). The vector ΔR has
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the gage outputs that are measured when the balance experiences a load. Matrix H is constructed from the
intermediate load estimates of the previous iteration step. The load iterations typically converge after 5 to
10 iterations assuming that a tolerance of 0.0001 % of capacity is used to test for convergence.

B. Non–Iterative Method
The balance calibration data of a force balance may also be analyzed using the Non–Iterative Method.

Differences between the Non–Iterative Method and the Iterative Method are discussed in great detail in
Ref. [4]. Therefore, only basic elements of the Non–Iterative Method are reviewed in this section.

In principle, the Non–Iterative Method exchanges the independent and dependent variables that the
Iterative Method uses. Now, gage outputs become independent variables and balance loads become dependent
variables as far as the regression analysis of the balance calibration data is concerned. The Non–Iterative
Method is a one step process as the loads are directly fitted as a function of the measured gage outputs.
Consequently, no load iteration is required to predict loads from gage outputs during a wind tunnel test.

Again, data of a six–component force balance may be used to illustrate the application of the Non–
Iterative Method. It is assumed that the calibration data of the force balance is given in force balance format.
Then, we get the following six regression models for the analysis of the balance calibration data:

N1 = η0︸︷︷︸
intercept

+ · · · + ηξ · R1︸ ︷︷ ︸
dominant

+ · · · (3a)

N2 = β0︸︷︷︸
intercept

+ · · · + βρ · R2︸ ︷︷ ︸
dominant

+ · · · (3b)

S1 = γ0︸︷︷︸
intercept

+ · · · + γσ · R3︸ ︷︷ ︸
dominant

+ · · · (3c)

S2 = δ0︸︷︷︸
intercept

+ · · · + δφ ·R4︸ ︷︷ ︸
dominant

+ · · · (3d)

RM = μ0︸︷︷︸
intercept

+ · · · + μψ · R5︸ ︷︷ ︸
dominant

+ · · · (3e)

AF = ζ0︸︷︷︸
intercept

+ · · · + ζω · R6︸ ︷︷ ︸
dominant

+ · · · (3f)

The above equations highlight the fact that the regression model of each load component will be
dominated by the primary gage output. Loads are computed during a wind tunnel test by using the measured
gage outputs as input for the regression models of the loads that are defined in Eqs. (3a) to (3f).

In general, the Non–Iterative Method has the advantage that it is a one–step method. No iteration
is needed to compute loads from measured strain–gage outputs during a wind tunnel test. An analyst,
however, must not forget that the Non–Iterative Method ignores the fact that the balance loads are the
“true” independent variables of the calibration experiment as loads are “applied” and strain–gage outputs
are “measured” during the calibration of a balance. Therefore, the success of the Non–Iterative Method hinges
on the fundamental assumption that a switch of the independent and dependent variables of the calibration
data set does not negatively influence the mathematical description of the “true” physical behavior of the
balance. In addition, the robustness and reliability of the regression model of each balance load depends on
the fact that (i) the model does not have near–linear dependencies between terms and that (ii) it consists
of statistically significant terms (see Ref. [6] for a discussion of these issues). These two requirements also
apply to regression models of the gage outputs that the Iterative Method uses.

In the next section of the paper data from the calibration of NASA’s MK40 balance is used to illustrate
the connection between the regression coefficients of the Iterative Method and Non–Iterative Method.
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III. Hidden Connection between Regression Models

Data from the calibration of the NASA Ames MK40 force balance was chosen to illustrate the “hidden”
connections that exist between the regression coefficients of the strain–gage outputs and the regression
coefficients of the balance loads. The Ames MK40 balance was manufactured by the Task Corporation. It is
a six–component force balance that measures five forces and one moment (N1, N2, S1, S2, AF , RM). The
balance has a diameter of 2.5 inches and a total length of 17.31 inches. Table 1 shows the load capacity of
each load component.

Table 1: Load capacities of the NASA Ames 2.5in MK40 balance.

N1, lbs N2, lbs S1, lbs S2, lbs RM , in–lbs AF , lbs

CAPACITY 3500 3500 2500 2500 8000 400

The original balance calibration was performed as a manual calibration. A total of 164 data points
were taken in 16 load series. The analysis of the balance calibration data was done in several steps. First,
the given calibration loads were tare corrected for the weight of the balance shell, calibration body, and
other calibration fixtures. Then, the calibration data was analyzed using both the Iterative Method and the
Non–Iterative Method that were described in previous sections.

For simplicity, it was decided to focus on hidden connections between regression coefficients of the
forward normal force component and regression coefficients of the forward normal force gage output. Con-
nections between regression coefficients of other load components and gage outputs can be investigated in a
similar manner.

First, the Non–Iterative Method was applied to the calibration data of the MK40 balance. The analysis
started by applying a regression model optimization process to the data so that the regression model of the
forward normal force component would satisfy a set of widely accepted statistical quality requirements (see
Refs. [7] and [8] for a description of the optimization process and the quality requirements). The optimization
process chose the following 13–term regression model for the forward normal force component:

N1 = η0 + η1 ·R1 + η2 · R2 + η3 · R3 + η4 ·R5 + η5 · |R1|
+ η6 · |R2| + η7 · |R3| + η8 · |R5| + η9 · R5 ·R5
+ η10 ·R1 · |R1| + η11 ·R2 · |R2| + η12 · R5 · |R5|

(4)

The symbols η0, η1, ..., η12 are the coefficients of the regression model of the forward normal force
component. Figure 2a shows the Analysis of Variance result for the regression model of N1. The math
term and t–statistic columns are highlighted using blue rectangles. The t–statistic results confirm that the
forward normal force gage output R1 is the dominating term in the regression model of the forward normal
force component N1 as the term R1 has the largest t–statistic magnitude (+982). Figure 2b shows the
regression model and all coefficients of the forward normal force component. This is the regression model
that the Non–Iterative Method ultimately uses for the prediction of the forward normal force component
from the measured strain–gage outputs.

Now, the Iterative Method was applied to the calibration data of the MK40 balance. Similarly, the
regression model optimization process identified the following 13–term regression model for the forward
normal force gage output:

R1 = a0 + a1 ·N1 + a2 ·N2 + a3 · S1 + a4 · RM + a5 · |N1|
+ a6 · |N2| + a7 · |S1| + a8 · |RM | + a9 · RM · RM
+ a10 ·N1 · |N1| + a11 ·N2 · |N2| + a12 · RM · |RM |

(5)

It is interesting to point out that the optimized regression model term combination listed on the right
hand side of Eq. (5) can also be obtained by simply exchanging each primary gage output with the corre-
sponding primary gage load in Eq. (4). The symbols a0, a1, ..., a12 are the regression coefficients of the
forward normal force gage output R1. Figure 3a shows the Analysis of Variance result for the regression
model of R1. The math term and t–statistic columns are highlighted using blue rectangles. The t–statistic
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results confirm that the forward normal force component N1 is the dominating term in the regression model
of R1 as the term N1 has the largest t–statistic magnitude (+891). Figure 3b shows the optimized regres-
sion models and all coefficients of the six gage outputs of the MK40 balance. These coefficients are used to
assemble the matrices C1 and C2 that the iteration equation and iteration process of the Iterative Method
need for the prediction of balance loads from measured strain–gage outputs.

Now, a question comes up: Can the coefficients defined by the regression model of the forward normal
force gage output R1 (see Eq. (5)) be used to “reverse engineer” the coefficients of the regression model of
the forward normal force component N1 (see Eq. (4))? An answer to this question can be found by first
solving the regression model of the forward normal force gage output R1, i.e., Eq. (5), for the forward normal
force component N1. Then, after some algebra, we get the following equation from Eq. (5):

N1 =
−a0

a1
+

1
a1

·R1 +
−a2

a1
·N2 +

−a3

a1
· S1 +

−a4

a1
·RM +

−a5

a1
· |N1|

+
−a6

a1
· |N2| +

−a7

a1
· |S1| +

−a8

a1
· |RM | +

−a9

a1
· RM · RM

+
−a10

a1
·N1 · |N1| +

−a11

a1
·N2 · |N2| +

−a12

a1
·RM · |RM |

(6)

Unfortunately, Eq. (6) still has the loads N1, N2, S1, and RM on the right hand side of the equation.
These loads, however, can be approximated by using the observations that (i) the original regression models
of the strain–gage outputs each have a single dominant term and that (ii) all other terms of the regression
model of the gage outputs are small when compared with the corresponding dominant term. Therefore, after
simplifying Eqs. (1a), (1b), (1c), and (1e), and inspecting the coefficients given in Fig. 3b, we get:

R1 ≈ aξ ·N1 where ξ = 1 (7a)

R2 ≈ bρ ·N2 where ρ = 2 (7b)

R3 ≈ cσ · S1 where σ = 3 (7c)

R5 ≈ eψ ·RM where ψ = 4 (7d)

The approximations given above can be solved for the four remaining load components that still need
to be substituted on the right hand side of Eq. (6). Then, we get:

N1 ≈ [ 1 / a1 ] · R1 where [ 1 / a1 ] ≡ primary sensitivity of R1 (8a)

N2 ≈ [ 1 / b2 ] · R2 where [ 1 / b2 ] ≡ primary sensitivity of R2 (8b)

S1 ≈ [ 1 / c3 ] · R3 where [ 1 / c3 ] ≡ primary sensitivity of R3 (8c)

RM ≈ [ 1 / e4 ] · R5 where [ 1 / e4 ] ≡ primary sensitivity of R5 (8d)

Finally, after using Eqs. (8a) to (8d) to subsitute the remaining load components on the right hand side
of Eq. (6) and after some algebra, we get the following approximation of the regression model of the forward
normal force component N1 of the MK40 balance:

N1 ≈ −a0

a1
+

1
a1

·R1 +
−a2

a1 b2
·R2 +

−a3

a1 c3
· R3 +

−a4

a1 e4
·R5 +

−a5

a1 |a1| · |R1|

+
−a6

a1 |b2| · |R2| +
−a7

a1 |c3| · |R3| +
−a8

a1 |e4| · |R5| +
−a9

a1 e4 e4
·R5 · R5

+
−a10

a1 a1 |a1| ·R1 · |R1| +
−a11

a1 b2 |b2| ·R2 · |R2| +
−a12

a1 e4 |e4| · R5 · |R5|

(9)
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The exact solutions of the regression coefficients of the forward normal force component N1 are defined
in Eq. (4) and listed in Fig. 2b. These coefficients, i.e., ...

η0 , η1 , η2 , η3 , η4 , · · ·
may be compared with the “reverse engineered” approximations that were obtained from the regression
model of gage output R1. They are defined in Eq. (9) as follows:

−a0

a1
,

1
a1

,
−a2

a1 b2
,

−a3

a1 c3
,

−a4

a1 e4
, · · ·

The regression coefficients of the fitted gage outputs are listed in Fig. 3b. Therefore, it is possible to
compute the “reverse engineered” approximations of the regression coefficients of the forward normal force
and compare them with the exact solutions that are depicted in Fig. 2b.

The table in Fig. 4 shows the result of the comparison of the exact and approximated coefficient sets.
Two observations can be made after inspecting the table: (i) signs of the exact and approximated coefficients
match; (ii) magnitudes of the exact and approximated coefficients show good agreement.

The influence of each individual coefficient on the regression model was also investigated in more detail.
Therefore, the exact solution was modified by replacing one coefficient at a time by its approximation. Then,
the standard deviation of the load residuals was computed for the modified regression model that consisted
of one approximated and twelve exact coefficients. The computed standard deviations are shown in the last
column of Fig. 4. We observe that the largest standard deviation is reported for the case when the coefficient
of the most significant term, indicated by the t–statistic of +982, is replaced by its approximation. This
observation is expected as the standard deviation of the load residuals must reach a maximum when the
most significant coefficient is replaced by its approximation.

Finally, it is of interest to compare the standard deviation of the residuals of the forward normal force
component for the three different analysis options that are discussed in the present paper. Table 2 below
lists the standard deviation as a percentage of the capacity of the forward normal force component.

Table 2: Standard deviation of the load residuals of the forward normal force N1.

BALANCE CALIBRATION DATA ANALYSIS APPROACH STANDARD DEVIATION

ITERATIVE METHOD ⇐⇒ exact solution, Eq. (2) 0.0515 % CAP.

NON–ITERATIVE METHOD ⇐⇒ exact solution, Eq. (4) 0.0489 % CAP.

NON–ITERATIVE METHOD ⇐⇒ approximation, Eq. (9) 0.0646 % CAP.

As expected, the standard deviations of the exact solution for the Iterative Method and the exact
solution of the Non–Iterative Method show excellent agreement as the difference between the two standard
deviations is only 0.0026 %. The standard deviation of the approximation of the Non–Iterative Method shows
reasonable agreement with the corresponding exact solution as the difference is 0.0157 %. At this point it is
important to emphasize that the approximation of the Non–Iterative Method should never be used instead of
the corresponding exact solution for the calculation of balance loads. The approximation was only developed
for the present study to show that a “hidden” connection between the regression coefficients of the Iterative
and Non–Iterative Method can be established.

IV. Conclusions

The present study illustrates that “hidden” connections between regression coefficient sets used by
the Iterative and Non–Iterative Method may exist. It is possible to estimate sign and magnitude of the
regression coefficients of the fitted loads by using the regression coefficients of the fitted gage outputs as
long as (i) balance data is analyzed in its design format, (ii) the regression models of the loads and gage
outputs meet rigorous statistical quality requirements, and (iii) the regression model terms can be obtained by
simply switching primary loads and gage outputs. Numerical differences between the exact and approximated
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regression coefficient sets remain. They reflect the fact that the regression models used by the Iterative and
Non–Iterative Method are still independent regression solutions of a given balance calibration data set.

Results of the present study may help users of both the Iterative and Non–Iterative Method to better
understand how the two balance calibration data analysis approaches are connected to each other. It must
also not be forgotten that the application of the Non–Iterative Method requires a switch of the independent
and dependent variables that the balance calibration experiment defines. Questions about the validity of this
variable exchange may come up at some point in time. Then, the approach used in the present investigations
could be used to assess the influence of this variable exchange on the balance load estimates that are obtained
by applying the Non–Iterative Method.
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Fig. 1 Relationship between primary gage output R1 and tare corrected primary gage load N1.

Fig. 2a Non–Iterative Method: Analysis of Variance results for regression model of forward normal force N1.
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η0=
η1=
η2= 
η3=
η4=
η5=
η6=
η7=
η8=
η9=
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η11=
η12=

Fig. 2b Non–Iterative Method: Coefficients of optimized regression model of forward normal force N1.

Fig. 3a Iterative Method: Analysis of Variance results for regression model of gage output R1.
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(only 50 of 97 regression coefficient rows shown)

a0=
a1=>

a2= 
a3=

a4=

a5=
a6=
a7=

a8=

a9=

a10=
a11=

a12=

b2 c3 e4

Fig. 3b Iterative Method: Coefficients of optimized regression models of gage outputs R1, R2, ..., R6.
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MATH T–STATISTIC EXACT SOLUTION APPROXIMATION STD. DEV. OF

TERM (from Fig. 2a) (uses coefficients of non–iterative method, (uses coefficients of iterative method, LOAD RESID., %

see also Eq. (4), values given in Fig. 2b) see also Eq. (9), values given in Fig. 3b)

INTERCEPT +244 η0 = +5.650E + 01
−a0

a1
= +5.663E + 01 0.0489 %

R1 +982 η1 = +2.915E + 00
1
a1

= +2.909E + 00 0.0566 %

R2 +29 η2 = +7.997E − 02
−a2

a1 b2
= +8.065E − 02 0.0491 %

R3 +4 η3 = +2.409E − 03
−a3

a1 c3
= +3.105E − 03 0.0492 %

R5 −11 η4 = −1.742E − 02
−a4

a1 e4
= −1.838E − 02 0.0495 %

|R1| −27 η5 = −2.561E − 02
−a5

a1 |a1| = −2.444E − 02 0.0492 %

|R2| −18 η6 = −1.567E − 02
−a6

a1 |b2| = −1.395E − 02 0.0496 %

|R3| +13 η7 = +8.287E − 03
−a7

a1 |c3| = +7.948E − 03 0.0490 %

|R5| +14 η8 = +2.498E − 02
−a8

a1 |e4| = +2.336E − 02 0.0502 %

R5 ·R5 −5 η9 = −8.925E − 06
−a9

a1 e4 e4
= −8.157E − 06 0.0492 %

R1 · |R1| −7 η10 = −3.293E − 05
−a10

a1 a1 |a1| = −3.747E − 05 0.0506 %

R2 · |R2| −8 η11 = −3.187E − 05
−a11

a1 b2 |b2| = −3.257E − 05 0.0490 %

R5 · |R5| +5 η12 = +8.664E − 06
−a12

a1 e4 |e4| = +9.327E − 06 0.0492 %

Fig. 4 Comparison of exact solution with approximation of regression model coefficients of N1.
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