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Diffusive and Magnetically Controlled Convective Conditions (MICAST)

The MICAST Microgravity Research Program Focuses on:
•A systematic analysis of the effect of convection on the microstructural 

evolution in cast Al-alloys.

•••• Experiments that are carried out under well defined processing conditions.

• Sample analysis using advanced diagnostics and theoretical modeling.

→The MICAST team investigates binary, ternary and commercial alloys

based on the Al-Si system.



Intent

Conduct a Thorough Ground-based Investigation

•••• Utilize Aluminum – 7wt. % Silicon Alloys
♦ Directionally Solidify Samples having an Initial Aligned Dendritic  Array 

♦ Evaluate the Dendritic Microstructure (λλλλ1, λλλλ2, λλλλ3, d) as a function of the    

Steady-State Processing Conditions (V, G, Co)
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Use the Above for Comparison to Limited # of DS μg Samples

•••• Partially melt and Directionally Re-Solidify terrestrially grown 

dendritic mono-crystals of Al-7 wt% Si   (9-mm dia, 25 cm long) 

in microgravity.
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Outline
• Microstructural Considerations

• Expectations• Expectations

• Ground-based Results

• Microgravity Results

• Comparative Comments



Microstructural Considerations
Why Directional Solidification?
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J.C. Williams: Phil. Trans. R. Soc. Lond. A (1995) 351, p. 435.



Microstructural Considerations:  Evaluation
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λλλλ1, Primary Dendrite Arm Spacing

Relative Dendrite Grain Orientation

λλλλ3, Tertiary Dendrite Arm Spacing

d, Primary Dendrite Trunk Diameter

Statistically Compile and Relate to

Solidification Processing  Conditions of:

● Growth Velocity (V)

● Temperature Gradient (G)

● Alloy Composition (Co)



Expectations
Solidification Processing in a Microgravity Environment

Advantages: Minimize Thermo-Solutal Convection

Minimize Buoyancy Effects
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Minimize Buoyancy Effects

Intent: Produce Segregation Free Samples Grown Strictly

by Heat Transfer and Solute Diffusion

Purpose: Better Understand the Relationship between

Processing – Microstructural Development

Application: Maximize Material Properties



Microgravity Processing
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Al- 7 wt.% Si

ESA Low Gradient

Furnace (LGF) Insert

Sample Cartridge

Microgravity Science Research

Facility (MSRF) Aboard the ISS
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X-ray radiograph of MICAST7Eutectic Melt Back 

Microgravity Processed Sample MICAST 7

X-ray radiograph of MICAST7
/ Isotherm

No terrestrial samples which are processed in LGF or SQF equivalent hardware 

under R and GL conditions  which are identical to MICAST6, MICAST7
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Terrestrial:

G = 15 K cm-1

Microstructural Comparison: Earth and Microgravity

Al – 7 wt. % Si

V = 5 µµµµm s-1 V = 50 µµµµm s-1

MICAST6:

G = 20 K cm-1

MICAST6 Seed:

V = 41 K cm-1,

G = 22 µµµµm s-1
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Microstructural Analysis of Directionally Solidified 
Al -7 wt. % Si Alloy Samples

2) Primary Dendrite Trunk Diameter
Terrestrial: GL = 41 Kcm-1,

V = 85 mm s-1

1) Primary Dendrite Arm Spacing



Primary Dendrite Arm Spacing (λλλλ1)
Which primary dendrite arm spacing (λλλλ1) to use?
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= 623 µµµµm

3) Nearest neighbor spacing = 368 ± 126 µµµµm

→→→→Theoretical models predict nearest neighbor spacing

2) Minimum Spanning Tree:

Spacing= 412 ± 138 µµµµm 

1) Geometrical Spacing:



Theoretical Models for Primary Dendrite Arm Spacing 
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Analytical Numerical
Tip radius: Trivedi (1980) Hunt-Lu (1996)

Primary spacing: Trivedi (1984) Hunt- Lu (1996)

Trunk diameter: None

Co 7 wt% Si

ml -6.31 K/ wt% Si Metals Handbook, vol. 8 (1973)

k 0.1

г 0.196 µm K Gunduz and Hunt (1985)

Dl 4.3X10-9 m2/s (Poirier compilation)

Physical Properties for Al- 7 wt% Si

R



Primary Dendrite Trunk Diameter (����)
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Initial Trunk

Diameter, φφφφ0

Dendrite Tip Radius

Reproducible and Predictable

Microstructural Constituent

Dynamic Growth

Trunk Diameter Rapidly Increases Until Diffusion Fields Overlap (▼)

Final Trunk

Diameter, φφφφ

Stagnant Growth



Primary Dendrite Trunk Diameter ( )
“Initial” Trunk Diameter (φφφφ0) Determination
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Primary Dendrite Tip Radius

Esaka (1986 Ph.D. Thesis) Measured  0 from

Succinonitrile-Acetone “alloys” grown at 

different V and GL.

o= 6.59 ± 1.3 Rtip 

Dl Gl k/(ml R Co (k-1))
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Primary dendrite trunk diameter (����) ) ) ) model 

After φφφφ0 the trunk diameter increases 

via dissolution of secondary arms and 

re-deposition  on the trunk until the 

eutectic reaction.

Assumptions:
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Assumptions:

1. Kirkwood model (1985) of 

ripening applies.

2. Secondary arm melts back 

because of its curvature.

3. Mass of the melted arm 

deposits on trunk surface 

where there is negative 

curvature.

(1)

(2)

(3)

(4)

Melting rate of an

arm of length, l



Mushy Zone Freezing Time  ~ ml(CE-Co)/RGm

Primary dendrite trunk diameter ( ) model 
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Primary Dendrite Arm Spacing (λλλλ1)

Primary Dendrite Trunk Diameter (φφφφ)

Comparison of Earth and ISS Processed Samples
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Comparison of Earth and ISS Processed Samples

with Theoretical Models



Primary dendrite arm spacings as

 compared to Hunt-Lu calculations
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Primary dendrite arm spacing (no convection), µµµµm
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�ISS-DS:  Good agreement  with predictions from Hunt-Lu model. 

� Terrestrial  DS (“Not Steepled”) :  Good agreement with predictions from Hunt-Lu model. 

�Terrestrial DS (“Steepled”):   Convection decreases primary  dendrite arm spacing.



Primary dendrite trunk diameter as compared to trunk

diameter model calculations, using rt (Hunt-Lu)
P

ri
m

a
ry

 d
e
n

d
ri

te
 t

ru
n

k
 d

ia
m

e
te

r 
(e

m
p

a
ri

c
a

l)
, 
µµ µµ

m

200

250

300

American Society for Gravitational and 

Space Research (ASGSR), New Orleans, LA 

28 Nov 2012 – 2 Dec 2012

Primary dendrite trunk diameter (no convection), µµµµm
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�ISS-DS:  Good agreement with predictions from the trunk-diameter model. 

�Terrestrial  DS (“Not Steepled”) :  Good agreement  with predictions from model. 

�Terrestrial DS (“Steepled”):  Convection increases trunk diameter.



Conclusions
• Primary dendrite arm spacings of Al-7 wt% Si alloy 

directionally solidified in low gravity environment of space 

(MICAST-6 and MICAST-7: Thermal gradient ~ 19 to 26 K cm-1, 

Growth speeds varying from 5 to 50 µµµµm s-1) show good 

agreement with the Hunt-Lu model.

American Society for Gravitational and 

Space Research (ASGSR), New Orleans, LA 

28 Nov 2012 – 2 Dec 2012

• Primary dendrite trunk diameters of the ISS processed 

samples show a good fit with a simple analytical model  

based on Kirkwood’s approach, proposed here. 

• Natural convection,

– decreases primary dendrite arm spacing.

– appears to increase primary dendrite trunk diameter.

• Need more samples processed in Microgravity
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