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A nonlinear simulation of the NASA Generic Transport Model was used to investigate
the effects of errors in sensor measurements, mass properties, and aircraft geometry on the
accuracy of dynamic models identified from flight data. Measurements from a typical sys-
tem identification maneuver were systematically and progressively deteriorated and then
used to estimate stability and control derivatives within a Monte Carlo analysis. Based
on the results, recommendations were provided for maximum allowable errors in sensor
measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic
modeling accuracy. Results using other flight conditions, parameter estimation methods,
and a full-scale F-16 nonlinear aircraft simulation were compared with these recommenda-
tions.

Nomenclature

Roman
a acceleration [ft/s2]
b wingspan [ft]
C coefficient
c̄ mean aerodynamic chord [ft]
e error vector
I inertia [slug · ft2]
J(θ) cost function
j imaginary number,

√
−1

L, M , N applied body torques [lbf · ft]
m mass [slug]
p, q, r body frame angular velocities [rad/s]
q̄ dynamic pressure [lbf/ft2]
< real part
S wing reference area [ft2]
T data record length [s]
t time [s]
V airspeed [ft/s]
X regressor matrix
X, Y , Z applied body forces [lbf]
z measurement vector

Greek
α angle of attack [rad]
β sideslip angle [rad]
∆ perturbation value
δ control surface deflection [rad]
θ parameter vector
ρ air density [slug/ft3]
Σ parameter covariance
φ, θ, ψ Euler angles [rad]
ω frequency [rad/s]

Superscripts
˙ time derivative
† complex conjugate transpose
ˆ estimated value
−1 inverse

Subscripts

0 trim value

a aileron

e elevator

r rudder
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I. Introduction

Applying system identification techniques to aircraft flight dynamics problems often involves extracting
linear stability and control derivatives from experimental flight test data. These results can then facilitate
applications including performance and handling qualities analysis, aircraft redesign, flight simulator devel-
opment, and control law synthesis. It is important to understand how errors in the data collection and
modeling processes manifest in the parameter estimates. This knowledge can improve flight test procedures
and instrumentation, thereby saving time and money in the system identification process.

The effects of additive measurement noise, unmodeled dynamics or process noise, and information de-
ficiency due to lack of excitation on system identification results are well understood,1,2 and a branch of
system identification techniques has evolved to consider the effects of using quantized observations.3,4 In
the 1970’s, studies5–8 were conducted to determine the effect of flight instrumentation errors on the aircraft
dimensional stability and control derivative estimates using the output-error method in the time domain1,9

with linear simulation models and doublet inputs. These works focused on time-skews; time lags; sensor
position, misalignment, bias, and scale factor errors; and accelerometer and air data boom correction errors.
The authors placed a premium on the quality of control input measurements, and also concluded that results
varied from aircraft to aircraft. These studies were not able to take advantage of modern control input design
and parameter estimation techniques, nor did they consider normalized stability and control derivatives, nor
did they examine the effect of sensor resolution, mass and inertia errors, and geometry errors in their studies.

One sector of research and development that could particularly benefit from this information includes
the design of subscale, unmanned air vehicles. Although envisioned as cheaper alternatives to manned flight
vehicles, these aircraft may become prohibitively expensive due to the cost of high quality on-board sensors
that are also small and light weight. Knowing the trade offs between sensor quality and modeling accuracy
would allow for better aircraft system solutions. Additionally, mass distribution and aircraft geometry
properties are found using intricate computer aided drawing (CAD) models or by experiment. Both are time
consuming processes that still have error. Also, unmanned vehicles are often subject to rapid configuration
changes or damage from flight testing that change these parameters too rapidly for a CAD analysis. It would
therefore benefit designers to have a set of guidelines and recommendations that relate the accuracy of these
parameters to the accuracy of dynamic models identified from flight test data.

This paper presents such guidelines. Section II describes a high-fidelity, nonlinear simulation of a trans-
port style aircraft, as well as a system identification maneuver designed for extracting dynamic models.
Section III presents the model structure for the aerodynamic force and moment coefficients, as well as the
equation-error method for estimating the stability and control derivatives from flight data in the frequency
domain. In Section IV, increasing errors are sequentially introduced to each measurement while stability
and control derivatives are estimated and recorded within a Monte Carlo analysis. A summarizing table
with recommendations to meet 5% and 10% error budgets on the primary stability and control derivatives is
presented. This table is the primary contribution of this paper and will give designers guidelines for selecting
instrumentation and measurement accuracies. These recommendations are also compared with other flight
conditions, parameter estimation methods, and aircraft in this section.

All of the input design, signal processing, and system identification work presented in this paper was done
using software written in MATLAB R© called System IDentification Programs for AirCraft (SIDPAC),1 which
was developed at NASA Langley Research Center, and is continually expanded and improved. SIDPAC has
been applied successfully to a wide variety of flight and wind tunnel experiments at NASA Langley Research
Center1 and elsewhere, and is used at more than 80 institutions worldwide.

II. Materials

A. NASA Generic Transport Model

This work employed a simulation of the NASA Generic Transport Model (GTM), which describes the rigid
body flight dynamics of a subscale, transport type aircraft having mass and geometry parameters listed in
Table 1. The GTM simulation was selected for analysis because it is a high-fidelity, nonlinear simulation
of a subscale aircraft. The GTM was designed to represent a conventional transport type aircraft, having
relatively well-known flight dynamics and behaviors. Additionally, the GTM was chosen because a truth
model can be extracted from the simulation using finite differences and compared to the Monte Carlo analysis
results.
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Table 1. Mass and geometry properties of the GTM

Parameter Variable Value Unit

Mass m 1.5416 slug

Roll Inertia Ixx 1.3270 slug·ft2

Pitch Inertia Iyy 4.2540 slug·ft2

Yaw Inertia Izz 5.4540 slug·ft2

Coupling Inertia Ixz 0.1200 slug·ft2

Mean Aerodynamic Chord c̄ 0.9153 ft

Wingspan b 6.8488 ft

Wing Reference Area S 5.9018 ft2

The GTM simulates the nonlinear, six degree of freedom, rigid body dynamics of the aircraft. Aerody-
namic control surfaces include the elevator, aileron, rudder, spoilers, stabilizers, and flaps. The aerodynamic
model used in the GTM is derived from a series of wind tunnel tests conducted at the NASA Langley Research
Center.10 A 5.5% scaled wind tunnel model was tested in the 14 ft by 22 ft subsonic wind tunnel using static
and forced oscillation tests to generate an aerodynamic database. That database was augmented with data
from rotary balance tests conducted using a 3.5% scaled wind tunnel model in the 20 ft vertical spin tunnel.
A polynomial-based aerodynamic model was then extracted from the database using multivariate orthogonal
functions, expanded in the aircraft states and controls, and is implemented in the simulation.1,11,12 The
GTM also includes two turbojet engines, the dynamics for which are modeled as a first order lag from the
pilot throttle input to the thrust output. This model is based on multivariate orthogonal functions identified
from ground testing, with ram drag corrections that vary with altitude and airspeed.

The GTM software is written as MATLAB R© code. The user provides an initial state vector and a time
history of control surface inputs. The simulation computes time histories of the aircraft translational and
rotational positions, velocities, and accelerations, as well as power and thrust states. Additional tools are
provided to trim the aircraft and generate linear perturbation models about those trim conditions using
central finite differences.

B. Nominal Perturbation Maneuver

Simulation data from a single nominal flight maneuver were examined. For this maneuver, the GTM was
trimmed for straight and level flight at a 1200 ft altitude and a 130 ft/s airspeed, which is a typical flight
condition for this aircraft.13 The simulation code determined trim values of +4.52 deg angle of attack, +1.40
deg elevator deflection, and 15% throttle for this condition.

Orthogonal, phase-optimized, multi-sine control input perturbations1,14 were chosen to excite the GTM
for system identification. These multiple-axis inputs are commonly used for system identification at NASA
Langley Research Center and have led to good modeling results in a variety of flight conditions including
straight and level, hypersonic, high sideslip angles, and post-stall flight.14,15 Each of the elevator, aileron,
and rudder control surface deflections had the form

δ(t) = δ0 + ∆δ(t)

= δ0 +
∑
k∈K

ak sin

(
2πk

T
t+ φk

)
(1)

where δ0 is the trim value, ∆δ(t) is the perturbation, ak is the amplitude, T is the excitation record length,
φk is the phase angle, ωk = 2πk/T is the excitation frequency, and K is the set of available frequencies for
that input.

The excitation record length was chosen as T = 35 s, which corresponds to a fundamental frequency
of 0.0286 Hz, to provide enough information content for system identification. Excitation frequencies were
selected as integer multiples of this fundamental frequency, between the range 0.2 Hz and 2.0 Hz, where the
rigid body dynamics of interest typically reside. Because these frequencies are harmonic multiples, they are
mutually orthogonal and were excited simultaneously to shorten experiment durations without correlating
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data and deteriorating estimation results. Excitation frequencies were assigned to the inputs in an alternating
manner to fully span the bandwidth of the input. For simplicity, amplitudes were selected to have uniform
power and normalized such that the elevator, aileron, and rudder have perturbation amplitudes

A = ak
√
M (2)

of 2.0 deg, 0.5 deg, and 1.5 deg, respectively, where M is the number of frequency indices used in the input.
These amplitudes are typical of those used in practice;15 smaller amplitudes result in lower signal-to-noise
ratios and larger amplitudes introduce nonlinearities. The phase angles were determined using a simplex
search optimization to minimize the relative peak factors

RPF =
max[∆δ(t)]−min[∆δ(t)]

2
√

2 · rms[∆δ(t)]
(3)

of the inputs to keep the aircraft near the trim condition for linear modeling. These excitation inputs are
parameterized in Table 2.

The GTM was simulated with these inputs at the reference flight condition and the resulting time history
data is shown in Figure 1. Amplitudes of the responses are small enough to use for linear modeling, but
large enough to produce good modeling results. Airspeed, air flow angles, and rotational velocity outputs
all remain within the region of validity of the aerodynamic database.10

III. Methods

A. Aerodynamic Modeling

Observing the conventional simplifying assumptions for a rigid body flight dynamics model of a fixed-wing
aircraft,1,16,17 the nonlinear equations of motion can be rearranged to compute the aerodynamic force and
moment coefficients

CY = (may)/(q̄S)

CZ = (maz)/(q̄S)

Cl = [Ixxṗ− Ixz(ṙ + pq) + (Izz − Iyy)qr]/(q̄Sb)

Cm = [Iyy q̇ + (Ixx − Izz)pr + Ixz(p2 − r2)]/(q̄Sc̄)

Cn = [Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq]/(q̄Sb) (4)

by substituting measured flight data.1 The mass, inertia, wing reference area, mean aerodynamic chord, and
wingspan of the aircraft are typically known before the flight test. Dynamic pressure, rotational velocities,
and translational accelerations are measured by on-board sensors. Rotational accelerations are found by
smoothly differentiating angular velocity measurements.1 The longitudinal coefficient CX is not included
here because it is associated with the slower phugoid mode and is often excluded from a control law design.

The aerodynamic force and moment coefficients in Eq.(4) were modeled in terms of the aircraft states
and controls with the linear expansions1,16,17

CY = CYβ∆β + CYp

b∆p

2V
+ CYr

b∆r

2V
+ CYδa

∆δa + CYδr
∆δr

CZ = CZ0
+ CZα∆α+ CZq

c̄∆q

2V
+ CZδe

∆δe

Cl = Clβ∆β + Clp

b∆p

2V
+ Clr

b∆r

2V
+ Clδa

∆δa + Clδr
∆δr

Cm = Cm0 + Cmα∆α+ Cmq

c̄∆q

2V
+ Cmδe

∆δe

Cn = Cnβ∆β + CYp

b∆p

2V
+ Cnr

b∆r

2V
+ CYδa

∆δa + Cnδr
∆δr (5)

valid for small deviations about the trim condition, where ∆ indicates a perturbation value and the coefficients
multiplying the aircraft states and controls are the unknown stability and control derivatives.
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Table 2. Multi-sine perturbation input description (record length T = 35 s)

Elevator Aileron Rudder

A = 2.0 deg A = 0.5 deg A = 1.5 deg

ak = 0.6667 deg ak = 0.1091 deg ak = 0.3273 deg

M = 22 M = 21 M = 21

RPF = 1.2445 RPF = 1.2136 RPF = 1.0658

Index Frequency Phase Index Frequency Phase Index Frequency Phase

k k/T [Hz] φk [rad] k k/T [Hz] φk [rad] k k/T [Hz] φk [rad]

7 0.2000 3.6221 8 0.2286 3.9280 9 0.2571 5.8733

10 0.2857 4.1272 11 0.3143 6.0649 12 0.3429 4.9406

13 0.3714 3.2037 14 0.4000 0.8306 15 0.4286 3.1968

16 0.4571 2.6584 17 0.4857 1.5477 18 0.5143 0.0323

19 0.5429 0.0811 20 0.5714 2.2952 21 0.6000 3.3582

22 0.6286 2.5869 23 0.6571 1.4435 24 0.6857 4.3454

25 0.7143 6.0820 26 0.7429 6.2755 27 0.7714 3.9451

28 0.8000 0.0769 29 0.8286 3.1900 30 0.8571 5.7802

31 0.8857 1.6735 32 0.9143 0.0810 33 0.9429 4.4729

34 0.9714 1.7690 35 1.0000 2.0319 36 1.0286 3.3028

37 1.0571 0.6256 38 1.0857 3.0491 39 1.1143 0.0384

40 1.1429 5.0289 41 1.1714 3.8835 42 1.2000 3.6866

43 1.2286 2.5389 44 1.2571 2.3799 45 1.2857 4.8036

46 1.3143 5.3888 47 1.3429 1.6406 48 1.3714 0.3270

49 1.4000 0.8353 50 1.4286 5.3963 51 1.4571 0.8943

52 1.4857 0.6303 53 1.5143 2.3521 54 1.5429 1.1219

55 1.5714 2.2350 56 1.6000 5.2871 57 1.6286 5.7885

58 1.6571 2.3720 59 1.6857 1.8165 60 1.7143 3.7299

61 1.7429 0.9076 62 1.7714 1.7858 63 1.8000 5.4749

64 1.8286 5.1943 65 1.8571 0.6440 66 1.8857 2.8322

67 1.9143 1.2656 68 1.9429 5.5245 69 1.9714 3.7967

70 2.0000 3.4607
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B. Frequency Domain Equation-Error Parameter Estimation

Given the measurements of the aerodynamic coefficients in Eq.(4) and the model structure in Eq.(5), it
is a parameter estimation problem to determine the unknown stability and control derivatives that best
match the equations to the data. The equation-error method in the frequency domain1 was employed to
estimate the stability and control derivatives. This method ignores sensor noise and modeling error at higher
frequencies, has produced good results in practice, and provides a fast analytical solution amenable to Monte
Carlo analysis.

The first step is to transform the data into the frequency domain using the Fourier transform. A measured
signal has the finite Fourier transform

z(ω) =

∫ T

0

z(t)e−jωtdt (6)

which, for relatively fast sampling frequencies, can be approximated by the discrete Fourier transform

z(ωm) ' ∆t

N−1∑
i=0

z(i∆t)e−jωmi∆t (7)

where ∆t is the sampling period and N is the number of data samples. A high-accuracy chirp-z transform1,18

was used to implement the Fourier transform using frequencies between 0.1 Hz and 2.5 Hz, in 0.025 Hz
increments.

Each force and moment coefficient in Eq.(5) was arranged into the least-squares framework as

z = Xθ + e (8)

where X contains Fourier transforms of the regressor time histories, θ are the unknown stability and control
derivatives, and e contains the Fourier transform of the error. Minimization of the least-squares cost function

J(θ) =
1

2
(z−Xθ)†(z−Xθ) (9)

results in the parameter estimates and uncertainty

θ̂ =
[
<{X†X}

]−1<{X†z}

Σ(θ̂) = σ2
[
<{X†X}

]−1
(10)

where the equation-error variance σ2 was estimated from the model residuals.1

The model fits to the frequency domain force and moment coefficient data using the equation-error
method are shown in Figure 2(a). The models fit the data well, as indicated by coefficients of determination
above 0.99 and the small residuals shown in Figure 2(b) at one tenth the scale. No unmodeled dynamics
are evident within the 2.5 Hz bandwidth. Finite differences were used to interrogate the simulation and
determine a truth model for the stability and control derivatives with which to compare the estimation
results. Perturbations for the finite differences were selected as the maximum deviations from the trim
values in the flight data. The equation-error results were generally within two standard deviations of the
true model parameters, further indicating an accurate estimation and that there is sufficient information
content in the data for identification. True values and estimates of the stability and control derivatives are
listed in Table 3. Differences between the frequency domain equation-error results and the finite differences
are due to noise on the measurements, which bias the estimated parameters, as well as modeling error due
to linearization and assuming the longitudinal and lateral/directional motions decouple.

IV. Results

The Monte Carlo method was used to evaluate the model accuracy under different measurement errors.
In each case, unique Gaussian random noise sequences were used to produce 100:1 signal-to-noise ratios on
the surface angle deflection measurements and 20:1 signal-to-noise ratios on the remaining measurements in
Figure 1 to make the study more realistic. Afterwards, selected measurements were sequentially and gradually
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Figure 2. Model fits to the nominal flight data using the equation-error method in the frequency domain

Table 3. Stability and control derivatives and nominal estimates for the GTM

Numerical Central Frequency Domain

Derivative Finite Difference Equation-Error

θ θ̂ ± σ̂(θ̂)

CYβ −1.0125 −1.0065± 0.0037

CYp +0.0543 +0.0735± 0.0158

CYr +0.8574 +0.8877± 0.0238

CYδa
−0.0177 −0.0155± 0.0032

CYδr
+0.3387 +0.3390± 0.0012

CZα −4.8370 −4.8345± 0.0077

CZq −27.102 −27.609± 0.5040

CZδe
−0.4807 −0.4801± 0.0093

Clβ −0.1432 −0.1393± 0.0029

Clp −0.3542 −0.3333± 0.0123

Clr +0.1331 +0.1535± 0.0186

Clδa
−0.0760 −0.0735± 0.0025

Clδr
+0.0290 +0.0293± 0.0009

Cmα
−1.6349 −1.6134± 0.0068

Cmq
−41.215 −41.292± 0.4441

Cmδe
−1.7744 −1.7924± 0.0082

Cnβ +0.2165 +0.2147± 0.0009

Cnp −0.0408 −0.0461± 0.0039

Cnr −0.3840 −0.3892± 0.0059

Cnδa
−0.0025 −0.0032± 0.0008

Cnδr
−0.1691 −0.1692± 0.0003
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deteriorated to various levels, as discussed later, and parameter estimation results of the stability and control
derivatives were recorded. To assure that results had converged, one thousand runs were performed for each
measurement selected and for each level of deterioration.

Figures were generated for only the primary, on-axis stability and control derivatives. The secondary,
off-axis derivatives are generally less important for performance analysis and control synthesis, and their
estimates diverged more quickly with measurement degradation. Each plot marker represents the mean
value of one thousand different estimates. The error bars represent the two-standard-deviation spread of
those results. The dashed lines show the ±10% bounds of the finite difference values. When the two-
standard-deviation bars extend past the error bounds of the finite difference values, that derivative no longer
meets that error criteria. A table of recommendations is presented in Section V to summarize these results.
A more detailed description of the results of this study is forthcoming in a technical memorandum.

A. Sensor Measurement Resolution

Sensor measurements were degraded by quantizing the noisy measurements to various degrees before using
the data in the parameter estimation process. This mimics manufacturer sensor resolutions and the analog-
to-digital conversion process that occurs in flight hardware. As an example, Figure 3(a) shows the angle of
attack and side slip angle time histories of the nominal data set with added noise. Figure 3(b) then shows
these time histories quantized with a resolution of 0.6 degrees. Depending on the random noise sequence
and the quantization level, the measurement can take on different values than the original time series, which
impacts the parameter estimation. After all the measurements had noise added and a particular set of
measurements were quantized, stability and control derivatives were estimated and results were recorded.
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Figure 3. Quantized air flow measurements example

Figure 4 shows, for example, the primary stability and control derivatives estimated for various levels of
quantization on the air flow angle measurements. At full resolution with no quantization error, the nominal
estimation case presented in Figure 2 and Table 3 is recovered.

As the quantization becomes coarser, stability and control derivative estimates increase only slightly in
variance. This is because the noise on the measurements is small compared to the magnitude of the sig-
nals in the frequency region where the estimation occurs. The bias, however, increases significantly with
measurement error and causes the estimates to diverge from the true solutions, as seen in Figure 4. The
lateral/directional dynamics typically diverge faster than the longitudinal dynamics because there are more
parameters to estimate and more information is consequently needed to achieve good estimates. As the
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degradation progresses, the damping derivatives generally diverge first, followed by the control derivatives,
and then the static derivatives. Damping derivatives are typically difficult to accurately estimate in prac-
tice, as indicated by the order of magnitude larger error bounds in Table 3. The control derivatives are
usually estimated well because system identification requires good control surface excitation. Finally, static
derivatives are usually well-estimated because they are strong parameters that tend to dominate the flight
dynamic responses. The off-axis parameters, such as Cnδa

, are not shown because they are generally smaller
in value and lesser in importance than the on-axis derivatives, such as Cnδr

. These parameters also tend to
diverge quicker with degrading measurement resolutions.

Several other measurement sources were degraded in addition to air flow angle sensors. Among them
were gyroscopes, which measure the rotational velocities p, q, r that appear in Eq.(4) and (5). Linear
accelerometers measure the translational accelerations ay and az, which only affect the side force CY and
heave force CZ coefficients. The control surface deflection angles δe, δa, δr are measured using potentiometers.
The dynamic pressure is measured using a Pitot-static tube, and then the airspeed is calculated using

V =
√

2q̄/ρ (11)

where the air density ρ is found using a standard atmosphere table. Errors were not introduced into the
Euler angle solutions or the GPS position measurements because these do not appear in Eq.(4).

Additionally, a method has recently been developed for reconstructing air flow angle measurements from
gyroscopes and Euler angle measurements (which can also be reconstructed if not available).19 For small
perturbations about a trim condition at a low angle of attack, the differential equations

α̇ ' q − βp+ (cosφ cos θ + az)/V

β̇ ' αp− r + (sinφ cos θ + ay)/V (12)

can be integrated from initial conditions using flight data measurements to reconstruct angle of attack
and sideslip angle. By reconstructing these time series, fewer sensors are needed, which reduces weight,
complexity, and calibration times. Stability and control derivatives were also estimated while reconstructing
angle of attack and sideslip angle using degraded gyroscope and accelerometer measurements.

B. Mass Properties and Aircraft Geometry

Measurements of the mass distribution and aircraft geometry were degraded by adding a uniformly dis-
tributed, random bias to each of the mass and geometry properties. This type of error results from incorrect
knowledge of the aircraft properties. In the case of the mass distribution, random biases were simultaneously
added to the mass m and the inertias Ixx, Iyy, Izz, and Ixz, and then parameter estimation was performed.
Typically these measurements are performed on the ground, before flight test data collection, using drafting
software or experimental swinging techniques. Errors develop due to low fidelity modeling; inaccuracies in
measuring sub-component mass, inertia, and geometry; and systematic errors in conducting the swing tests.
These parameters affect the nondimensionalization of the aerodynamic force and moment coefficients. The
impact of errors on the mass distribution, for example, are shown in Figure 5. With no error, the stability
and control derivative estimates are very close to the true values from the finite differences. As the measure-
ment degrades, the mean estimates remain approximately the same, but the variation increases. The effect
of the product of inertia Ixz was also examined. This parameter is time consuming to find experimentally
because the test model has to be mounted at an angle and then swung. As measurements get progressively
worse, the product of inertia becomes more important; for better measurements, Ixz may be safely ignored
without much effect on the parameter estimates.

Measurements of the aircraft geometry, described by the mean aerodynamic chord c̄, the wingspan b,
and the wing area S, were simultaneously degraded while estimating stability and control derivatives. These
values typically come from measurements or drafting software computations, and appear in the nondimen-
sionalization of the force and moment coefficients as well as in the aerodynamic model regressors. The
resulting parameter estimation errors follow the same trend as those for the mass distribution variation.

C. Comparisons

The results discussed in the previous two sections were for one aircraft flying at one trim condition and using
one method of parameter estimation. To begin to understand how such factors may influence the parameter
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estimation error trends, the analysis was first repeated for different trim conditions. Figure 6 shows the
pitching moment stability and control derivatives under degrading gyroscope measurements for trim angles
of attack between 0 deg and 10 degrees. The GTM was not trimmed at or above stall in this analysis, but
such flight conditions may be considered in the future. Although the numerical values of the stability and
control derivatives change with varying trim conditions, the character of the estimate divergence does not
and the supplied recommendations remain consistent.

The equation-error method in the frequency domain was also changed to the equation-error method
in the time domain to reveal how sensitive the recommendation results are to the parameter estimation
technique. This was done using the same general approach, but using time-domain data directly, instead of
first transforming the time-domain data into the frequency domain. Analysis in the time domain introduced
larger biases into the stability and control estimates and caused them to diverge faster than the corresponding
frequency domain estimates. This can be seen, for instance, by comparing the gyroscope degradation results
at the nominal trim condition in Figure 7 to the corresponding results in Figure 6. Recall that the nominal
angle of attack is 4.52 degrees. For example, the pitch damping Cmq

exceeds 10% bounds at about 6 deg/s
resolution when using the frequency domain analysis, but at only 4 deg/s resolution when using the time
domain analysis. Other parameters, such as CYr and Clp do not fall within the 10% bounds even with no
measurement deterioration. Unmodeled dynamics, such as sensor noise, quantization error, and quantization
chatter, create these biases in the time domain analysis. The frequency domain analysis is more robust to
these types of error since only the low frequency data up to 2.5 Hz are considered. Therefore, the supplied
recommendations for measurements accuracies may be overly optimistic if a time domain equation-error
method is used. Output-error in the time domain is another parameter estimation technique that will be
considered in the future and compared with previous results.

The analysis was also applied to the nonlinear F-16 simulation1,20 supplied in SIDPAC to begin to
understand how the recommendations scale with aircraft size. The F-16 was trimmed for straight and
level flight at a 10,000 ft altitude and with a 450 ft/s airspeed and 5 deg angle of attack, which represents a
typical flight condition. Although the GTM and the F-16 have different mass properties, stability and control
derivative estimation results with degrading measurements showed similar trends and consistent accuracy
recommendations. Previous studies5,7 reported differently, but this is expected to be caused by the use of
dimensional derivatives which do not take into account vehicle size and mass properties. Therefore, results
are more robust to vehicle size when using normalized stability and control derivatives.

V. Conclusions

Errors in sensor measurements, mass properties, and aircraft geometry are important factors that im-
pact the identification of stability and control derivatives for applications including performance analysis,
flight simulator development, and control synthesis. One particular application concerns small and low cost
unmanned air vehicles, where it is desired to have good modeling results using inexpensive hardware.

This paper investigated these dependencies using a nonlinear simulation of a subscale transport type
aircraft. A system identification maneuver was designed to excite all axes of the aircraft dynamic response
using orthogonal phase-optimized multi-sines. After a model structure was chosen, parameter estimation was
performed in the frequency domain using the equation-error method. Parameter estimation in this nominal
case had low errors and matched the data well, indicating an appropriate model structure and that there
was enough information content in the data. This process was repeated for various states of measurement
deterioration.

The primary contribution of this paper is Table 4, which recommends minimum measurement accuracy
budgets for meeting 5% and 10% error margins on the stability and control derivative estimates. These rec-
ommendations were obtained by progressively degrading sensor measurements, one at a time, and observing
how the estimates change within a Monte Carlo analysis. Thus, exceeding the recommendation in a single
measurement produces estimates likely to exceed the accuracy tolerance. In practice, a 10% error margin on
the stability and control derivatives is usually sufficient. These recommendations can be used as guidelines
for flight test specification and design, and for flight test planning and execution. Additional findings can
be enumerated as the following:

1. Accurate estimates of stability and control derivatives can be obtained by reconstructing angle of attack
and sideslip angle measurements from gyroscopes and accelerometers; however, to do so, these sensors
require at least a three-fold increase in resolution. Nonetheless, this method appears to be a viable
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alternative to using air flow angle vanes for system identification, as these sensors disturb the local
flow, add complexity to the aircraft, and are difficult to calibrate.

2. The product of inertia Ixz was found to have a small impact on stability and control derivative estimates
if other mass distribution measurements were accurate. This term may therefore be safely ignored to
save time and money if aircraft mass distributions are being determined experimentally. Although not
difficult in a CAD analysis, experimentally determining this product of inertia is time consuming.

3. Repeated analysis showed that the results listed in Table 4 were not sensitive to the trim conditions
below stall. Trim conditions at and above stall were not yet attempted because for transport style
aircraft, these represent somewhat unusual flight conditions.

4. Equation-error in the frequency domain used less computation time and was more accurate in estimat-
ing stability and control derivatives than equation-error in the time domain. This is because there are
fewer data points to use in the frequency domain, which are also more accurate and are not sensitive
to the high frequency chatter that occurs from quantization.

5. Results in Table 4 were found to scale to full size aircraft, per analysis using the F-16 nonlinear
simulation. This is due to the fact that the effect of most of the varying parameters is taken into
account through nondimensionalizing the stability and control derivatives.

Table 4. Recommended measurement accuracies for achieving specific error budgets

Measurement Variable 5% Error 10% Error Unit

Air Flow Angles α, β 0.4 0.5 deg

Dynamic Pressure q̄ 6.0 7.0 lbf/ft2

Gyroscopes p, q, r 4.0 6.0 deg/s

Gyroscopesa p, q, r 1.0 2.0 deg/s

Accelerometers ax, ay, az 0.04 0.10 g

Accelerometersa ax, ay, az 0.04 0.05 g

Potentiometers δe, δa, δr 0.4 0.5 deg

Mass and Inertia m, Ixx, Iyy, Izz, Ixz 4.0 8.0 %

Mass and Inertiab m, Ixx, Iyy, Izz 4.0 6.0 %

Aircraft Geometry c̄, b, S 2.0 5.0 %

awhile reconstructing α and β19

bwhile neglecting Ixz

A more detailed description of these results will be submitted as a technical report. Plots from each case
will be included. Additionally, other aircraft, measurements errors, parameter estimation techniques, and
trim conditions may be investigated.
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