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Conclusions 

Linearized analysis of the constant velocity moment equation has provided a simple method of predicting 
the dynamic stability of blunt entry capsules. This method relics only on static measurement or CFD 
calculation of the contribution to the pitching rnornent slope by the vehicle backshell. Cornparisoll with 
:".fER and Viking experimental data ha.':> i:>hmvn tha.t this analysii:> can predict dynamic stability trends due 
to backshell geometry as ,>vell as T\.1a.ch number. Dynamic i:>tability characterii:>tics \vere obtained for two 
blunt body geometries that agreed well with damping characteristics measured experimentally. The only 
llnknmvn pararIleter required to generate the lagged pitch-damping predictions \V;-l.." the phase angle by \vhieh 
the backshell mOInents lagged. The phel.-:e angle was taken directly from computational \vork by Teramoto 
et a1. The comparif:>ons with experiment data suggef:>ts thif:> approach can be used in screening candidate 
backshell shapes and may assist in ballistic range data reduction. 

A more rigorous method of determining the lag time, perhaps based on the momentum of the vortex 
structures in the wake flmv, is a recommended next step. The static solutions indicate that the mechanisms 
assumed to drive the supersonic dynarnic instabilities break dmvn at higher angles of attack. Verifying that 
this breakdmvn occurs, and understanding that process could lead to improved ref:>ults at higher anglef:>-of
attack. An experimental investigation of the backshell pressure distributions and vmke flowficlds behind 
these types of blunt body flows should be done to validate the pressure lag and underlying mechanisms 
identified with CFD by Teramoto et al. Flmv visualization, surface pressure and mOInent measurements 
\vould all be helpful. Obtaining experimental data to better anchor this simple predictive model hel." the 
potential to more fully understand the physical mechanisms that caUf:>e blunt body dynamic instabilitief:>, 
which to date have only been characterized with empirical data, supported with important, but limited, 
computational investigations. 
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