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ORION EXPLORATION FLIGHT TEST-1 CONTIGENCY DROGUE 
DEPLOY VELOCITY TRIGGER 

Robert S. Gay*, Susan Stochowiak†, and Kelly Smith‡ 

As a backup to the GPS-aided Kalman filter and the Barometric altimeter, an 
“adjusted” velocity trigger is used during entry to trigger the chain of events that 
leads to drogue chute deploy for the Orion Multi-Purpose Crew Vehicle 
(MPCV) Exploration Flight Test-1 (EFT-1). Even though this scenario is multi-
ple failures deep, the Orion Guidance, Navigation, and Control (GN&C) soft-
ware makes use of a clever technique that was taken from the Mars Science La-
boratory (MSL) program, which recently successfully landing the Curiosity rov-
er on Mars. MSL used this technique to jettison the heat shield at the proper time 
during descent. Originally, Orion use the un-adjusted navigated velocity, but the 
removal of the Star Tracker to save costs for EFT-1, increased attitude errors 
which increased inertial propagation errors to the point where the un-adjusted 
velocity caused altitude dispersions at drogue deploy to be too large. Thus, to 
reduce dispersions, the velocity vector is projected onto a “reference” vector that 
represents the nominal “truth” vector at the desired point in the trajectory. Be-
cause the navigation errors are largely perpendicular to the truth vector, this pro-
jection significantly reduces dispersions in the velocity magnitude. This paper 
will detail the evolution of this trigger method for the Orion project and cover 
the various methods tested to determine the reference “truth” vector; and at what 
point in the trajectory it should be computed.  

INTRODUCTION 

The Orion Multi-Purpose Crew Vehicle (MPCV) Exploration Flight Test-1 (EFT-1) uses alti-
tude to trigger many of the key events during Entry Descent and Landing (EDL). One of the pri-
mary events is drogue parachute deploy. The drogue chutes are used to slow the descent to an 
acceptable rate for the larger main chutes, which allow the capsule to land soft enough for the 
crew to survive. There are two sources for navigated altitude on Orion: 1) The Primary Global 
Positioning System (GPS)-aided Kalman filter, and 2) The backup barometric altimeter (set of 
three). If the GPS and barometric altimeters fail for whatever reason, the inertial-only solution is 
used to compute the altitude (Kalman filter with no GPS or backup inertial-only solution if the 
Kalman filter is corrupted). The inertial-only solution is derived by propagating the Inertial 
Measurement Unit (IMU) data along with a gravity model. This method is robust, but much less 
accurate than filtered GPS or a barometric altimeter (especially in altitude). Consequently, an al-
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In order to determine at what velocity value to trigger drogue deploy (or actually the jettison 
of the Forward Bay Cover (FBC) that starts the sequence leading to drogue deploy), a set of Mon-
te Carlo runs was examined2. Specifically, statistics were taken on the velocity magnitude at 
which the desired drogue deploy altitude was reached. These results have varied slightly as the 
simulations and the flight software have matured. Figure 2 shows some early results that put the 
range between 435 ft/s and 503 ft/s. Choosing the higher side allows for more time to complete 
the chute sequence, while picking the low side provides more time for the barometric altimeters 
to come on line. Initially the high side was preferable, but later the value was reduced to the low 
side to keep from triggering on velocity before the barometric altimeters had useable data (not 
valid at high altitudes and Mach number). The current trigger value being used is 425 ft/s. 

 

 

Figure 2 Relative Velocity at Drogue Deploy Altitude (24 kft) 

 

 As stated earlier, one of the primary inertial-only propagation error sources is the initial atti-
tude error at Entry Interface. Monte Carlo results show that initial attitude errors of 0.3 degrees or 
greater will cause velocity-triggered drogue deployment to have altitude dispersions too great for 
a successful landing. Conversely, the results also showed that initial attitudes less than 0.1 de-
grees would produce satisfactory results. Figure 3 includes performance results for initial attitude 
errors of 0.1, 0.3, and 0.5 degrees2. The trigger value used was 503 ft/s. 
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Figure 4 Relative Velocity Magnitude Error at Drogue Deploy 

 

Fortunately, there does exist such an “adjustment” to the velocity so that the errors can be re-
duced enough to make it useful. A few years ago the Orion and MSL Entry Descent and Landing 
teams came together for a three-day meeting to exchange ideas and try to learn from each other. 
One of those ideas was a clever method used to trigger the MSL heat shield jettison1. Originally, 
the relative velocity was to be used, but the dispersions were too large to meet overall vehicle 
constraints. After, examining the problem, MSL engineers determined much of the navigation 
error is due to attitude errors, and that this manifested in such a way that the error is primarily 
perpendicular to the truth vector. Figure 5 generalizes the velocity error accumulated during iner-
tial-only propagation in the atmosphere. Clearly, projecting the navigated velocity vector onto the 
truth vector can reduce much of the magnitude error.  

 

 

Figure 5 Generalization of Inertial-only Velocity Propagation Error 

 

Initially, this technique was not used on Orion due to the wide variety of possible entry trajec-
tories (driven by anytime-return requirements). As will be detailed in the following section, the 
“truth” vector must be deterministic with this method. However, the current Orion EFT-1 trajec-
tory is very predictable making this technique useful. Figure 6 shows the results of a 3000 Orion 
Entry Monte Carlo run where the velocity error vectors at three altitudes (25 kft, 50 kft, & 75 kft) 
are all plotted in 3-D forming a “disc”. This “disc” confirms that the navigation vector “cones” 
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planet the vehicle is headed. Therefore, it should be possible to develop a backup drogue deploy 
trigger scheme that is valid for all entries using the same guidance scheme. Fortunately, early 
studies using Multivariate Logistical Regression techniques have already shown great promise. 
Several navigation signals are utilized to evaluate if the proper conditions are met for deploy-
ment. The Logistical Regression technique properly weights each signal allowing for large errors 
and dispersions. Future studies will also look at applying this technique as the primary method for 
triggering many of the key Entry, Descent, and Landing events. 

CONCLUSION 

Although it is very unlikely that the GPS and the barometric altimeters will all fail, this study 
shows that the Orion EFT-1 GN&C design has a robust alternate method to trigger drogue and 
main parachute deployment. In addition, this design is a great example of successful collaboration 
between two NASA programs: Orion MPCV and MSL. Finally, this work has also led the Orion 
GN&C team to investigate other trigger methods that will likely increase robustness and accuracy 
for future missions to come. 
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