JSC/EC5 U.S. Spacesuit Knowledge Capture (KC) Series Synopsis

Topic: TPS Inspection and Repair

Date: February 23, 2012 **Location:** Johnson Space Center (JSC), Houston, Texas

Presenter: Scott Parazynski, M.D.

Synopsis: Dr. Parazynski provided a retrospective on the EVA tools and procedures efforts NASA went through in the aftermath of Columbia for the Shuttle Thermal Protection System (TPS) inspection and repair. He describes his role as the lead astronaut on this effort, and covered all of the Neutral Buoyancy Lab (NBL), KC-135 (reduced gravity aircraft), Precision Air-Bearing Floor (PABF), vacuum chamber and 1-G testing that was done in order to develop the tools and techniques that were flown. Scott also discusses how the EVA community worked together to resolve a huge safety issue, and how his work in the spacesuit was critical to overcoming a design limitation of the Space Shuttle.

Biography: Dr. Scott Parazynski is a physician and a physiologist with expertise in human adaptation to stressful environments, having been graduated from Stanford University and Stanford Medical School. He went on to train at Harvard University and in Denver in preparation for a career in emergency medicine and trauma. In 1992 he was selected to join NASA's Astronaut Corps and eventually flew five Space Shuttle missions and conducted seven spacewalks (EVAs). In October 2007, Parazynski led the EVA team on STS-120, a highly complex space station assembly flight, during which he performed four EVAs. The fourth and final EVA is regarded by many as one of the most challenging and dangerous ever performed. In his 17 years as an astronaut, he also served in numerous senior leadership roles, including EVA branch chief and the lead astronaut for Space Shuttle Thermal Protection System Inspection & Repair (in the aftermath of the Space Shuttle Columbia tragedy). He has the distinction of being the only person to both fly in space and stand on top of the planet, the summit of 29.035-foot Mount Everest. He served as chief technology officer and chief medical officer at The Methodist Hospital Research Institute in Houston, Texas.

Video Length (Size): 1:29:37 (0.35582 GB)
1. “EVA Physiology & Medical Considerations Working in a Suit” --- Tuesday, January 24, 2012

2. “Real-time EVA Troubleshooting” --- Thursday, February 16, 2012

4. “EVA Skills Training” --- Tuesday, March 6, 2012
“Parazynski” is like “Smith” or “Doe” in Poland…
Fun & Games at the Launch of STS-107
STS-107: Hail Columbia --- Kalpana, Mike, Willie, Rick, Laurel, Dave and Ilan
Columbia Point

www.parazynski.com
Return To Flight

- Emotion-laiden
- Enormous challenges
 - Prevention
 - Inspection
 - **Access & Repair** where EVA crewmember was never meant to go
 - Tile and RCC repair materials
- Urgency to safely RTF before mandatory Shuttle retirement

www.parazynski.com
Commitment to Fly Again
Original project was managed by ES
- EC only peripherally involved
- We did support MMU aspect
Preliminary TPS Critical Detection Threshold*

- **Zone 1**: Penetrations + Perimeter Tiles: ~ 1” major dimension, 0.25” depth
- **Zone 2**: Fwd. Fuselage Lower Surface: ~ 3” major dimension, 0.25” depth
- **Zone 3**: Aft Fuselage Lower Surface: ~ 3” major dimension, 0.25” depth
- **Zone 4**: Wing Lower Surface: ~ 3” major dimension?, 0.25” depth
- **Zone 5**: Control Surfaces: TBD
- **Zone 6**: RCC Components: ~ 0.5” major dimension, 0.25” depth

* Does not necessarily mean repair would need to take place, but closer inspection would be desired.
VR Lab SAFER Inspection/Repair
TPS Access from OBSS and Strela
SAFER Underbelly Repair Fixture (SURF)

- Adjustable Tripod Legs for varying crew height and worksite topology (RCC leading edge compatible)
- Flight to/from worksite with HCM fixed on tripod; stowed out of the way during repair
- Angular misalignments (P/Y) easily corrected through foot restraint and lateral strut inputs while on short final
- Tools may be accommodated on dual Swingarms or offshoots of tripod itself
- Adhesive pads under tension on tripod feet; allows for quick release and controlled separation (adhesive sheets left on vehicle) --- lateral pads within reach of foot restrained crewmember
- Option to replace MMWS T-bar with an attachment to enable 360° yaw; alternately provide a Roll pedal on the boot plate
- Tool complement may include secondary Handrails with adhesive for work in neighboring areas, once a base is established
- Compact, lightweight for STBD TSA, sidewall carrier, or aft bulkhead Orbiter stowage (preferred)
- May want to enable adjustment of lateral strut angle, in addition to telescopic adjustment capability
- Could incorporate a GF (or WIF probe) behind the bootplate for SSRMS-based work, if tool provisioning is built into the design, or for other boom repair methods requiring greater stabilization; power to the worksite from the SSRMS or boom?
- Could mount heating lamps on dogbone portions of lateral struts, as req’d

Retractable Safety Tether
Telescoping Boom
Universal
Ball Joint
Quick Release
Adhesive Pad
Tether Point

CB/Scott Parazynski --- 4/23/03
Foot Pad Concept:
- Inflatable or felt backed block to provide a degree of cushion on contact
- Quick-release adhesive pads under tension
- Consider making the pads somewhat malleable to enable better surface contact on rounded surfaces, like the RCC leading edge (may not be necessary, depending on where the SURF is attached to structure)
- Reinstallation of new adhesive pads desirable at the worksite

* Variation on the theme
Multiple Use Tether Variant

- Adhesive pads (3) w/ universal joints
- Universal joint – attached to/near MWS baseplate. Allows pitch, yaw, roll control of lander
- Dogbone struts (3) for BRT
- EMU boot bumper guard (not for EVA loads / stabilization)
- Can egress lander and BRT to struts
- Offset / angled landing – universal joints allow lander pads (3) to contact surface prior to load application (i.e. self aligning)
- Adhesive pads have a quick release
- Crewmember can spin around central point for greater worksite access and pad release

www.parazynski.com
Tile Repair & STA-54 Uncertainties

- Perforated Membrane vs. “Open Technique”
- Swelling & Bubbling
- Uniformity of Density
- Char Layer Stability
- Operational Complexity
- Test Fidelity Concerns (1-G settling)

www.parazynski.com
Arc Jet Testing

www.parazynski.com
Human Thermal Vacuum Testing
Thousands of Parabolas
0-G Adherence and Technique Testing
Another Day @ The Office
Dual Glovebox Thermal Vacuum

www.parazynski.com
RCC Repair Strategies

- Fillers/Caulks
- Plugs
- Balloons
- Overwraps

www.parazynski.com
Dozens of Tools Designed, Tested

- Quick Turnaround
- Melamine Brushes from Home Depot
- Dispensers, Wipes, Caddies, Trash Containers, Primer
- Alternate Solutions: Tile Overlay, Tile Changeout

www.parazynski.com
CIPAA Frontside Views
CIPPA Front/Back Views

www.parazynski.com
CIPAA Left/Right Views
Tile Repair: Not to be taken lightly

Tile Repair DTO planned for STS-120 EVA5

www.parazynski.com
STS-121 RCC Repair DTO (NOAX ceramic): Mike Fossum & Piers Sellers

www.parazynski.com
The STS-118 Experience

- Focused Inspection
- Analysis & Modeling
- Assessment of Repair Strategies: Dual Glovebox
- Development of Crew Briefing Materials and Procedures
- Videoconference w/crew, Q&A
- Flew home w/o repair

www.parazynski.com
STS-123 Tile Repair Ablator Dispenser (TRAD)
DTO: Mike Foreman & Bob Behnken