
	 1

Adoption of Test Driven Development and Continuous
Integration for the Development of the Trick Simulation

Toolkit

John M. Penn
Trick Development Lead/ Senior Engineer
L-3 STRATIS Division
NASA JSC Engineering Directorate
Software, Robotics, and Simulation Division
Simulation and Graphics Branch

This paper describes the adoption of a Test Driven Development approach and a
Continuous Integration System in the development of the Trick Simulation Toolkit, a
generic simulation development environment for creating high fidelity training and
engineering simulations at the NASA/Johnson Space Center and many other NASA
facilities.

It describes what was learned and the significant benefits seen, such as fast, thorough,
and clear test feedback every time code is checked-in to the code repository. It also
describes a system that encourages development of code that is much more flexible,
maintainable, and reliable.

The Trick Simulation Toolkit development environment provides a common architecture
for user-defined simulations. Trick builds executable simulations using user-supplied
simulation-definition files (S_define) and user supplied "model code". For each Trick-
based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-
recording, interactive variable manipulation (variable server), and an input-processor.
Also included are tools for plotting recorded data and various other supporting tools and
libraries.

Trick is written in C/C++ and Java and supports both Linux and MacOSX.

Prior to adopting this new development approach, Trick testing consisted primarily of
running a few large simulations, with the hope that their complexity and scale would
exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this
approach yielded inconsistent results. It was obvious that a more systematic, thorough
approach was required.

After seeing examples of some Java-based projects that used the JUnit test framework,
similar test frameworks for C and C++ were sought. Several were found, all clearly
inspired by JUnit. Googletest, a freely available Open source testing framework, was
selected as the most appropriate and capable.

The new approach was implemented while rewriting the Trick memory management

	 2

component, to eliminate a fundamental design flaw. The benefits became obvious almost
immediately, not just in the correctness of the individual functions and classes but also in
the correctness and flexibility being added to the overall design. Creating code to be
testable, and testing as it was created resulted not only in better working code, but also in
better-organized, flexible, and readable (i.e., articulate) code. This was, in essence the
Test-driven development (TDD) methodology created by Kent Beck. Seeing the benefits
of Test Driven Development, other Trick components were refactored to make them
more testable and tests were designed and implemented for them.

Jenkins (originally named Hudson) brought significant automation to our development
process. Jenkins is a freely available (MIT License), easy to use, Java application that
initiates and monitors repeated job executions. Its primary use is as a continuous
integration system, for automated building and testing of software projects. Jenkins
schedules a build of the Trick distribution, on each of the different machine
architecture/operating system combinations that is supported, every 15 minutes (if our
Subversion source code repository has been updated). After a successful build, it runs the
entire unit test suite and then a collection of Trick based test simulations. Jenkins also
provides both a summary and a detailed status result.

Within 15 minutes of any source code check in, the state of the entire code base is
determined. If a problem is detected, Jenkins provides the details that allow the problem
to be quickly identified.

The combination of Test Driven Development and a Continuous Software Integration
System has given us much more confidence in our code. Not only has it made Trick more
reliable, flexible, maintainable, it’s made Trick development more efficient and more
pleasant.
	

