Space Telecommunications Radio System (STRS) Architecture
Tutorial Part 1—Overview

Louis M. Handler and Janette C. Briones
Glenn Research Center, Cleveland, Ohio

Dale J. Mortensen
ASRC Aerospace Corporation, Cleveland, Ohio

Richard C. Reinhart
Glenn Research Center, Cleveland, Ohio

December 2012
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Fax your question to the NASA STI Information Desk at 443–757–5803

- Phone the NASA STI Information Desk at 443–757–5802

- Write to:
 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320
Space Telecommunications Radio System (STRS) Architecture
Tutorial Part 1—Overview

Louis M. Handler and Janette C. Briones
Glenn Research Center, Cleveland, Ohio

Dale J. Mortensen
ASRC Aerospace Corporation, Cleveland, Ohio

Richard C. Reinhart
Glenn Research Center, Cleveland, Ohio
Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov
Space Telecommunications Radio System (STRS) Architecture
Tutorial Part 1—Overview

Louis M. Handler and Janette C. Briones
National Aeronautics and Space Administration
 Glenn Research Center
 Cleveland, Ohio 44135

Dale J. Mortensen
ASRC Aerospace Corporation
Cleveland, Ohio 44135

Richard C. Reinhart
National Aeronautics and Space Administration
 Glenn Research Center
 Cleveland, Ohio 44135

Abstract

Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA’s future telecommunications technologies. The presentation will provide a basic understanding of STRS.
Space Telecommunications Radio System (STRS) Architecture

Tutorial Part 1 - Overview

Glenn Research Center
November 2011
STRS Architecture

- STRS Background
- STRS Hardware & Software Structure
- STRS Infrastructure APIs
- STRS Application APIs
- STRS Configuration Files
- STRS Reference Documents
STRS Background
STRS Goals and Objectives

• Applicable to space and ground missions of varying complexity.
• Decrease the development time and cost of deployed capabilities.
• Increase the reliability of deployed radios.
• Accommodate advances in technology with minimal rework.
• Adaptable to evolving requirements.
• Enable interoperability with existing radio assets.
• Leverage existing or developing standards, resources, and experience.
• Maintain vendor independence.
• Enable waveform portability between compliant platforms.
• Enable cognitive radio concepts.
STRS Solution: Software-Defined Radio (SDR)

- SDRs are commonplace in commercial and military industries.
 - accommodates advances in technology
 - enables cognitive radio concepts
- SDRs allow encapsulation of functionality.
 - allows multiple vendors to work on different parts of the radio at once
 - allows updates to one part not to affect the other parts of the radio
 - allows portability
- Software design and implementation processes may be leveraged to lower risk and increase reliability
STRS Background

• SDRs present unique challenges in space.
 – Radiation environment
 – Temperature extremes
 – Autonomous operation
 – Size, weight, and power (SWaP) limitations
 – Timescale of deployments
 – Lengthy development cycles

• JTRS/SCA and OMG/SWRADIO were investigated
 – Including CORBA was too cumbersome due to SWaP
 – Including an XML parser was too cumbersome due to SWaP
 – SCA’s XML configuration files were too complex for our needs
 – Used Platform Independent Model (PIM) as a starting point for STRS API design

• Decided to allow a C language interface to minimize SWaP
STRS Hardware and Software Structure
SDR Signal Processing Hardware

- **General Purpose Processor (GPP)** typically contains and executes the Managing Software enabling Software Defined Radio functionality.

- **Specialized Hardware** contains and executes Application Software (i.e. firmware) enabling higher rate processing within the Software Defined Radio (e.g. FPGA).
Waveform Application Decomposition

- Low rate waveform application components allocated to processor based signal processor. High level services used to control and monitor application software.
- Operating Environment (OE) provides access to processor and specialized hardware for waveform processing.
- High rate waveform application components allocated to specialized processing hardware.

Waveform decomposition driven by designers, not architecture.
STRS Open Architecture
Waveform Application API and Hardware Abstraction

- Waveform designers access specified API to access processor and implements radio controls in the GPP
- APIs specified by architecture separate the waveform from the Operating Environment for waveform portability
- Operating Environment provides published interfaces (API) services and hardware abstraction control to waveform
- Hardware Abstraction Layer (HAL) also provides wrapper to help port HDL software among platforms
STRS Architecture

• Layer cake model
 – Waveform applications and high level services are insulated from OE by APIs
 – STRS APIs abstract away many platform differences
 – POSIX used to reduce API development
 – OE
 – Hardware Abstraction Layer (HAL)
STRS Architecture Conformance

- Conformant to STRS Architecture Standard requirements for applications
- Conformant to STRS Architecture Standard (STRS and WF APIs)
- Compliant to POSIX PSE51 or Subset with Waiver
- Documented HAL and HID as required by STRS Architecture Specification
Layer Cake Transition to UML

The software layer cake was translated using UML to describe the software systems using object-oriented style.
STRS Layered Structure
STRS Infrastructure APIs
STRS Infrastructure APIs

• STRS Infrastructure APIs are used:
 – Waveform calls methods in Infrastructure.
 – Infrastructure calls appropriate method in another Waveform, Device, or Infrastructure.

• Purpose:
 – Methods separate a request from the accomplishment of that request.
 – Methods are ‘extern “C”’ so that they can be called from either C or C++.
 – Methods insulate waveforms from having to know how another waveform, device or the infrastructure is implemented.
STRS Infrastructure APIs

Queue Control
- STRS_QueueCreate
- STRS_QueueDelete
- STRS_Read
- STRS_Register
- STRS_Log
- STRS_Write
- STRS_Unregister

Device Control
- STRS_DeviceClose
- STRS_DeviceFlush
- STRS_DeviceLoad
- STRS_DeviceOpen
- STRS_DeviceReset
- STRS_DeviceStart
- STRS_DeviceStop
- STRS_DeviceUnload
- STRS_SetISR

Testing
- STRS_RunTest
- STRS_GroundTest

Attribute
- STRS_Configure
- STRS_Query

Process Errors
- STRS_GetErrorQueue
- STRS_IsOK

Control
- STRS.Initialize
- STRS_ReleaseObject
- STRS_Start
- STRS_Stop

Application
- STRS_HandleRequest
- STRS_InstantiateApp
- STRS_AbortApp

Time
- STRS_GetNanoseconds
- STRS_GetSeconds
- STRS_GetTimeWarp
- STRS_GetTime
- STRS_SetTime
- STRS_SynchFile (Named Area)
- STRS_FileClose
- STRS_FileGetFreeSpace
- STRS_FileGetSize
- STRS_FileOpen
- STRS_FileRemove
- STRS_FileRename

- The STRS Software Architecture presents a consistent set of APIs to allow waveform applications, services, and communication equipment to interoperate in meeting a waveform specification.

- These APIs are used in general or to control one waveform from another.

- The list to the left is the minimum list of APIs that the STRS platform infrastructure must implement.
STRS OE Compliance

- Static
 - Implements STRS_API
 - Uses STRS Application API
 - Uses HAL API

- Dynamic (debug)
 - Supports WF
 - Supports Device
 - Supports File
 - Supports Queue
 - Supports health/fault management
 - Parses configuration files
 - BIT
 - WDT

- Document
 - HAL,
 - HID, etc.
STRS Waveform APIs
STRS Waveform Application Compliance

• A waveform is an STRS Application and must implement the APIs shown in the diagram.

• An STRS Application has OMG similarity; but STRS requires everything, except source and sink (STRS replaces OMG ports with source/sinks).

• The diagram shows how a Device fits in the infrastructure:
 o Device is internal, must have the shown functionality.
 o Device is an abstraction (proxy) that uses the HAL to get to the hardware.
 o No standard for the HAL API. Standard is at Device level (provider).
An STRS operating environment can either use an OS that conforms with 1003.13 PSE51 or provide a POSIX abstraction layer that provides missing PSE51 interfaces. For constrained resource platforms, the POSIX requirement is based on waveform requirements so that the waveforms are upward compatible (require POSIX methods).
STRS Waveform Compliance

- STRS Waveform (WF) compliance
 - Static
 - Implements STRS Application API
 - Uses POSIX AEP
 - Uses STRS Infrastructure API
 - Uses Configuration Files
 - Dynamic (debug)
 - WF executes (not performance)
 - WF signal interoperates (not STRS responsibility)
 - Document
Configuration Files

- Require schema and XML as part of the architecture
- The required XML should be transformed to a compact format
- The approach for the transformation is not mandated as part of the architecture
- STRS Reference Implementation uses XSL/XSLT to transform XML to an S-expression as compact form

Schema is used to validate XML. XML follows Schema.

Completed XML, schema, and XSL used to create compact form

Tested code in STRS Infrastructure to parse compact form for waveforms
STRS Reference Documents
STRS Reference Documents

 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110002806_2011001718.pdf

 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862_2008008550.pdf

 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090005977_2009004914.pdf
Backup Slides
Waveform State Diagram
Use Case Identifier: Example Use Case

Description: A Description of the use case goes here.

External Actors: External actor(s) involved with this specific use case.

Related Use Cases: Use cases that related to this use case by interaction or similarity.

Precondition: Any precondition that must exist before this use case can occur. Usually the initial RADIO state and WAVEFORM state is listed.

Triggering event: Event that triggers use case. Not all use cases have triggering events.

Main Flow:
1. This will be an ordered list of steps necessary to perform interaction. The main flow.
2. Step 2
3. Step 3
4. Step 4
5. etc.

Resulting event: If completion of use case results in an event it is listed here. Usually the resulting RADIO state and WAVEFORM state is listed.

Post condition: Describe the result of the use case interaction. (This is the post condition from the nominal flow)

Alternatives:
1a) This is where alternate flows are identified. The alternative will be identified by the number of the main flow where the branch occurs followed by a letter a-z.
3a) This is an example of an alternative flow for step 3.
3b) This is the second step in the alternative flow for step 3.
7a-8a) This is an alternative flow for a range of steps from the main flow.

Comments: Comments on use case.
A set of use cases were developed which is a set of scenarios that capture the different ways that external users interact with the STRS radio.
Class Example

Application Manager

• The Application Manager is responsible for the passing of messages or invoking commands in other application objects such as devices, waveforms, or services actively running on the STRS radio.

• It is responsible for creating or aborting application objects, waveforms, or services.

• It is also responsible for parsing the Configuration Files and setting corresponding values in the appropriate classes.

Above is an example of the UML representation of a Class

<table>
<thead>
<tr>
<th>Application Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>-appTable</td>
</tr>
<tr>
<td>-configTable</td>
</tr>
<tr>
<td>+parseConfigurationFile()</td>
</tr>
<tr>
<td>+instance()</td>
</tr>
</tbody>
</table>

Name – *Name that identifies the class and describes the functionality*

Attributes – *Variables containing the applicable data*

Methods – *Functions that are called to implement some operation*
STRS Open Architecture Hardware Representation

Internal Connections
- Data
- Control
- Clock
- System Bus

External Connections
- Data
- Clock
- Control
- Ground Test

External Interface

Modules
- General Purpose Processing Module (GPM)
- Specialized Processing Module (SPM)
- Radio Frequency Module (RFM)

Radio Function

www.nasa.gov
SDR/STRS Hardware Functional Diagram

General Processing Module (GPM)
- General Purpose Processor
 - Waveform / Application
 - Operating Environment
 - Low Speed Signal Processing
 - Radio Configuration & System Control

Signal Processing Module (SPM)
- General Purpose Processor
 - High Speed Digital Signal Processing
 - Waveform
 - Clock Distribution

RF Module (RFM)
- Variable Gain / Frequency
 - Clock Interface
 - Analog to Digital
 - Digital to Analog
 - Transmit RF
 - Receive RF

Data Formatting Spacecraft Data Interface
- Work Area Memory
- Persistent Memory
- Ground Test Interface
- Host/TT&C Interface

Persistent Memory
- Operating Environment
 - Work Area Memory
 - Host/TT&C Interface
 - Ground Test Interface

Antenna Interface
- Test & Status
- Antenna Control Interface

NASA/TM—2012-217819
SDR/STRS Hardware Functional Diagram

General Processing Module (GPM)

- Ground Test Interface
- Host/TT&C Interface
- Work Area Memory
- Persistent Memory
- General Purpose Processor
 - Waveform / Application
 - Operating Environment
 - Low Speed Signal Processing
 - Radio Configuration & System Control

Signal Processing Module (SPM)

- Spacecraft Data Interface
- Data Buffer / Storage
- Data Formatting
- High Speed Digital Signal Processing
 - Waveform

RF Module (RFM)

- Antenna Interface
- Test & Status
- Antenna Control Interface
- Variable Gain/ Frequency
- Clock Interface
- Analog to Digital
- Digital to Analog
- Receive RF
- Transmit RF

General Processing Module – consists of the general purpose processor, appropriate memory, spacecraft bus (e.g. MILSTD-1553), interconnection bus (e.g. PCI), and the components to support the configuration of the radio.

Signal Processing Module – signal processing used to handle the transformation of digital signals into data packets. Components include ASIC’s, FPGA’s, DSP’s, memory, and connection fabric/bus (e.g. PCI, flex-fabric).

RF Module – handles the RF functionality to transmits/receive the digital signal. Its associated components include RF switches, diplexer, filters, LNAs and power amplifiers.
STRS Hardware Functional Diagram

APIs separate waveform from operating environment – enabling waveform portability.

Managing Software runs on GPM

HAL API is published so that specialized HW developed by multiple vendors can be integrated with another vendor’s STRS infrastructure.

Test & Status on each module

Software/Firmware Abstraction: Layers define interfaces between components, separating SW/FW from HW.

Module Interfaces abstract and define the module functionality for data flow to waveform components. Enables multiple vendors to provide different modules or add modules to existing radios. Electrical interfaces, connector requirements, and physical requirements are specified/published by the platform provider.
The End
Space Telecommunications Radio System (STRS) Architecture Tutorial Part 1--Overview

Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA’s future telecommunications technologies. The presentation will provide a basic understanding of STRS.