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Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable 

insight to the performance of scramjet combustors. Tunable Diode Laser Absorption 

Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. 

However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not 

produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography 

(TDLAT) is a non-intrusive measurement technique for determining two-dimensional 

spatially resolved distributions of temperature and species concentration in high enthalpy 

flows. TDLAT combines TDLAS with tomographic image reconstruction. Several separate 

line-of-sight TDLAS measurements are analyzed in order to produce highly resolved 

temperature and species concentration distributions. Measurements have been collected at 

the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the 

NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). 

Measurements collected at the DCSCTF required significant modifications to system 

hardware and software designs due to its larger measurement area and shorter test 

duration. Initial LOS measurements from the NASA Langley DCSCTF operating at an 

equivalence ratio of 0.5 are presented. Results show the capability of TDLAT to adapt to 

several experimental setups and test parameters. 

Nomenclature 

ηc  = combustion efficiency 

nH2O  = water number density distribution 

Vx(y,z)  = axial velocity distribution 

ṄHydrogen,injected = total injected hydrogen flux 
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I  = transmitted intensity 

I0  = incident intensity 

L  = path length [cm] 

κν  = spectral absorption coefficient [cm
-1

] 

S(T)  = intensity [cm
-1

/molecule-cm
-2

] 

NT  = number density of the absorbing species [molecules∙cm
-3

] 

φν  = lineshape function [cm] 

αD  = Doppler width [cm
-1

] 

αL  = Lorentz width [cm
-1

] 

ν0  = transition line center wavenumber [cm
-1

] 

K  = Voigt function 

h  = Planck’s constant (6.626E−34
 
J∙s) 

c  = speed of light (299792458 m/s) 

kB  = Boltzmann constant (1.3806503E-23 m
2
∙kg/s

2
∙K) 

E”  = lower state energy level [cm
-1

] 

T0  = reference temperature [K] 

Q(T)  = partition function of the absorbing species 

A  = wavenumber-integrated area [cm
-1

] 

 

I. Introduction 

HE use of diode lasers for measuring gas properties originated in the 1970’s following the demonstration of 

direct current injection semiconductor lasers
1
. In 1977, one of the earliest demonstrations of using tunable IR 

diode lasers to non-intrusively acquire in situ measurement of gas properties in combusting gases was by Hanson et 

al
2
. The field of diode laser absorption sensing has grown rapidly since and has been applied in laboratory and 

industrial flows
1
. Tunable Diode Laser Absorption Spectroscopy (TDLAS) results in an integrated line-of-sight 

(LOS) measurement and can be used to measure various flow properties, such as temperature and species 

concentration. However, the integrated nature of a TDLAS measurement can be limiting in value as a measurement 

technique if large gradients in flow properties exist in the flow of interest. 

 The technique of Tunable Diode Laser Absorption Tomography (TDLAT) has been developed at the University 

of Virginia to spatially resolve temperature and species concentration in high speed, high enthalpy flows.  Unlike 

TDLAS, the TDLAT technique results in a 2D spatially resolved measurement plane. Over 2500 individual TDLAS 

LOS measurements are collected at numerous locations surrounding the flow of interest and then mathematically 

reconstructed using MATLAB’s ifanbeam tomographic inversion algorithm. 

 When applied to a supersonic combustor model with hydrogen injection, TDLAT can be utilized to gain 

understanding of the combustion efficiency. The spatially resolved water vapor concentration results from the 

TDLAT technique can be combined with Stereoscopic PIV (which results in 3D velocity vectors) and thus the water 

vapor flux can be calculated. This measured flux, when compared to the known injected hydrogen flux, can be used 

as a direct measurement of combustion efficiency in hydrogen-air combustors. This approach is described by the 

following equation: 
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where nH2O(y,z) is the spatially resolved water number density distribution from the TDLAT measurement, Vx(y,z) is 

the axial velocity distribution from the SPIV measurement, and ṄHydrogen,injected is the total hydrogen flux injected into 

the combustor. 
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 Validation of the TDLAT technique has been performed on the University of Virginia’s flat flame burner as well 

as on the UVaSCF
3,4

. An in situ calibration of the TDLAT technique was performed by making measurements on 

the UVaSCF without combustion and with a known mole fraction of the water vapor (12%) injected into the free 

stream. Figure 1 shows the reconstructed temperature and water vapor mole fraction at the exit plane of the 

combustor for a combustor total temperature of 1200 K. A warm core with temperatures near 700 K is surrounded 

by a cooler transition layer around 550-600 K and reaching wall temperatures of approximately 500 K. The outer 

temperatures near 300 K are indicative of the surrounding ambient room-temperature air. This core temperature 

around 700 K was found to be approximately 150K lower than that found by LOS TDLAS
3
. Work to resolve the 

discrepancy is still ongoing. The water vapor mole fraction reconstruction shows a core of air with 11-12% water 

vapor mole fraction, in agreement with the 12% steam injected. 

 Successful implementation of the TDLAT technique in the UVaSCF has prompted an extension of the technique 

to more challenging experiments, with regard to experimental parameters. Of particular interest to scramjet ground 

testing is the ability to “scale” up in size, specifically in the magnitude of air mass flow rate. As reported herein, 

TDLAT has been reconfigured to make spatially resolved temperature and species concentration measurements in 

the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). The DCSCTF provides ten 

times the flow rate of the UVaSCF, and as such the complexity of this facility provided significant challenges 

compared to the UVaSCF. There were three inherent challenges with applying the TDLAT technique to the 

DCSCTF that were encountered and overcome: 

 

1. Larger test section area. The area of the DCSCTF exit plane is 5.5” x 5.2” compared to the UVaSCF’s 1.0” 

x 1.5” exit plane. 

2. Decreased test duration. Typical DCSCTF test times range between 30 and 40 seconds compared to hours 

of uninterrupted testing in the UVaSCF. 

3. Harsh and noisy conditions at the DCSCTF exit plane. 

 

The first two problems listed were anticipated and considered in the preliminary phases of this research. The third 

problem was encountered during active testing and was resolved in the midst of testing. 

II. Theory 

TDLAT consists of two major components: absorption spectroscopy and computed tomography. Absorption 

spectroscopy is used to obtain spectral information at various positions around the measurement space, and then 

computed tomography is used to render a 2D distribution of the gas properties. 

A. Absorption Spectroscopy 

Absorption spectroscopy is governed by the Beer-Lambert law, which states that the ratio of the transmitted 

intensity, I, to the incident intensity, I0, is proportional to the exponential of the path length L [cm] of the absorbing 

species (water vapor in this research) multiplied by κν, the spectral absorption coefficient [cm-1]: 

 

 
Figure 1. Temperature and mole fraction distributions from reconstruction of TDLAT measurements on 

UVaSCF non-combusting with T0 = 1200 K and 12% steam injection.
3
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                                                                         LII  exp0                                 (2) 

 

The spectral absorption coefficient is given by: 

 

                        TNTS                          (3) 

 

where S(T) is the transition line strength [cm
-1

/molecule-cm
-2

], NT is the number density of the absorbing species 

[molecules∙cm
-3

], and φν is the lineshape function [cm], approximated by a Voigt function. The Voigt function is the 

spectral line shape resulting from the convolution of independent Lorentzian and Doppler line broadening 

mechanisms: 
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where αD is the Doppler width, αL is the Lorentz width, ν0 is the transition line center wavenumber, and K is the 

Voigt function. The temperature dependent line strength can be calculated using: 
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where h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant, E” is the lower state energy level 

[cm
-1

], ν0 is the line center wavenumber of the selected transition, T0  is the reference temperature [K], and Q(T) is 

the partition function for the absorbing species. By substituting Eq. (3) into Eq. (2), rearranging, and integrating over 

dν from -∞ to +∞, the integrated area under a line is given by: 

 

                                                                        LNTSA T                  (6) 

 

where A is the wavenumber-integrated area [cm
-1

]. When Eq. (5) is substituted into Eq. (6) the following equation 

results: 
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       (7) 

 

For the wavenumbers and temperatures considered in this research, the exp(-hcν0/KBT) terms can be neglected and 

thus Eq. (7) is simplified to: 
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A so-called Boltzmann plot can be constructed using Eq. (8) and several transitions. For each given transition, the 

absorption spectra are analyzed and the integrated areas under the transitions are calculated. The left-hand-side of 

Eq. (8) and the transition’s known lower state energy form an ordered pair. A linear fit is then performed on the 

collection of ordered pairs and the temperature and number density of the absorbing transition can be determined 

from the fit parameters. 

B. Tomographic Image Reconstruction 

Computed tomography is the process of capturing the internal structure of an object by mathematically 

reconstructing a series of measurements collected through the object. This process is most familiarly associated with 

the medical field’s Computer Axial Tomography (CAT) scan. In this case, a series of LOS X-ray images are 

collected from multiple angles and positions around the object of study. The LOS X-ray measurements are then 

computationally reconstructed to form a 2D cross-sectional image of the object. Analogously, multiple 1D TDLAS 
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LOS measurements are collected from multiple angles and positions around the object of study and are 

computationally reconstructed to form a 2D image of the object. 

If the measurements are made from a number of evenly spaced and symmetric locations around the periphery of 

the object of interest, a transform-based reconstruction method can be used.
5
 In this research, the filtered back-

projection algorithm is used, which is based on the Fourier slice (or central slice) theorem. 

To collect the TDLAS measurements, an infrared diode laser revolves around the object of interest. At discrete 

and evenly spaced locations along its circular path, the laser source stops for a measurement, such as locations s1 

and s2 in Figure 2. At each of these fan locations, the laser source then rotates through a discrete set of angles 

creating a fanbeam, as illustrated in Figure 2. Along each ray a single LOS TDLAS measurement is made. 

After the TDLAS measurements have all been collected, each transition’s integrated absorbance is determined 

for each LOS spectrum. A matrix can then be formed, organizing the integrated areas, denoted as Ai,j,k, according to 

three indices: the ray number, fan number, and transition (or wavelength) index. The A matrix is the variable to be 

reconstructed. For k = 1 to the number of transitions, a filtered back-projection algorithm is used to obtain a 2D 

reconstruction of each A(:,:,k). These 2D matrices correspond to the actual physical measurement plane, mapping 

out the area under the transition as a function of spatial location. At each point in space, i.e. each pixel, the LHS’s of 

Eq.(8) are plotted against their corresponding lower energy states, and this Boltzmann plot is utilized to calculate the 

temperature and water vapor concentration. 

III. Experimental Setup 

The DCSCTF is capable of testing ramjet and scramjet combustor models at conditions simulating flight from 

Mach 4 to Mach 8. A Mach 5 flight-enthalpy has been simulated for this research. Hydrogen combustion with 

oxygen-enriched air is used to heat the test gas to achieve the required conditions. The facility can operate with a 

variety of nozzles and (sc)ramjet models. The DCSCTF is ideal for research in mixing, ignition, flameholding, and 

combustion characteristics
7
. The DCSCTF is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic of multiple fan beams being collected around the periphery of an object.

6
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The TDLAT hardware is mounted to the DCSCTF inside the test cell, seen in Figure 3. During operation and 

between tests, the test cell remains closed. Therefore, although the TDLAT hardware is located inside the test cell, 

the TDLAT computer (runs data acquisition and motion control software) and the diode lasers are located in an 

adjacent room. The power cables, data cables, and optical fibers are fed into the test cell through a small hole in the 

wall as seen in Figure 4. This allows the user to actively control the TDLAT equipment remotely. 

 
Figure 3. NASA Langley Direct-Connect Supersonic Combustion Test Facility with UVA TDLAT system 

installed. 

 
Figure 4. Schematic of Direct-Connect Supersonic Combustion Test Facility and location of TDLAT 

Equipment. 
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The TDLAT technique makes use of three NTT Electronics polarization maintaining (PM) fiber coupled 

distributed feedback (DFB) lasers (NLK1E5GAAA and NLK1B5EAAA). The selection of the line transitions to use 

in this research was guided by X. Zhou et al.
8
 and consisted of four main criteria: 

 

1) Sufficient absorption required for high signal-to-noise ratio (SNR) measurements. 

2) Transitions should be selected to minimize interference from ambient (low-temperature) H2O, i.e. E″ ≥ 

1700 cm
-1

 for the selected transitions. 

3) The transitions must have sufficiently different lower state energies, E″, to yield a peak height ratio that is 

sensitive to temperature (in the range 1000-2500K), i.e. | E1″- E2″| ≥ 700 cm
-1

. 

4) The selected transitions must be isolated from nearby transitions. 

The transitions selected for use this experiment are given in Table 1. Note that the designations of the absorption 

transitions used in this paper are internal and used only for convenience in referencing the transitions. 

 The four transitions identified in Table 1 were found to have sufficiently favorable characteristics for this 

research based on the aforementioned criteria. However, they were inaccessible within a single laser scan. For this 

reason, three lasers were used. KB1 & KB2 are best suited for a lower temperature range, and KB2 & KB3a,b are 

best suited for a higher temperature range. Data are collected with all 3 lasers, in a time-multiplexed mode, for the 

full duration of the experiment. Depending on the data quality 

and SNR observed during post-processing, two, three, or four 

of the transitions are utilized in the Boltzmann plot. The lasers 

were temporally multiplexed using a MEMS-type fiber optical 

switch system. While the KB1 laser is switched on and scans 

over the first transition, the KB2 and KB3 lasers are switched 

off. After KB1 has scanned over its prescribed range, it 

switches off and KB2 is switched on. Lastly, KB2 is switched 

off and KB3 is switched on. This process is repeated each time 

a measurement is collected. In order to make the measurements 

as close to simultaneous as possible, each trio of laser scans 

was accomplished in 10 ms. 

 The optics are housed in a Tomographic Emitter-Detector 

(TED) box and a schematic is shown in Figure 5. The near 

infrared light is brought into the box through the PM fiber and 

is immediately passed through a collimating lens. The beam is 

collimated to a 1 mm diameter. It then passes through an 

aperture slightly larger than 1 mm. The collimated beam travels 

past a small right angle prism mirror, and finally out another 

aperture before exiting the TED box. It then travels through the 

test gas and hits an arc covered in a retroreflective material. 

The beam is then retroreflected, i.e. the beam is reflected back 

onto its original path, only now the beam begins to diverge 

conically. The spreading beam passes again through the test 

gas and back into the TED box through an aperture. The beam’s diameter is larger than previously, and the spread 

beam impinges on the right angle prism mirror. This portion of the beam is then directed through a bandpass filter 

(to filter out flame luminosity), a lens, and finally into an InGaAs detector. To create the fan beam as mentioned 

previously, a TED box is mounted to a Velmex rotational stage, allowing it to rotate through an entire fan. The TED 

Table 1. Transitions used in TDLAT system and their spectroscopic parameters.
9,10 

Transition Linecenter Wavenumber 
ν0 (cm-1) 

Transition Reference  
Intensity 

Sref (cm-1/molecule∙cm-2) 

Lower State Energy 
Level 

E” (cm-1) 

| Ei″- Ei+1″| 
(cm-1) 

KB1 7185.60 7.95E-22 1045.06 --- 

KB2* 7444.35 / 7444.37 4.06E-23 1787.00 741.94 

KB3a 7471.617 7.96E-26 2952.39 1165.39 

KB3b 7472.22 7.85E-26 2981.36 1194.36 

*This transition consists of two transitions spaced .02 cm-1 apart. They are essentially indistinguishable at the test conditions reported here, 

so weighted Sref and E” are given. 

 

    
Figure 5. Schematic of the Tomographic 

Emitter-Detector (TED) box. 
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box is coated with Aeroglaze Z306, an absorptive polyurethane paint, to minimize unintentionally scattered IR light. 

Each TED box, as well as the volume contained by the retroreflectors, adapter plate, and top lid, is purged with dry 

air to minimize ambient water vapor absorption. 

 As discussed previously, there were three major challenges faced when applying the TDLAT technique to the 

DCSCTF. First, the larger test section area called for hardware modifications. The original TDLAT experimental 

hardware used in the UVaSCF consisted of a single TED box mounted to a smaller Newport rotational ring which 

rotated incrementally 360° around the tunnel exit. The Newport rotational ring used for the tests conducted on the 

UVaSCF measured approximately 7” internal diameter, while the customized Newport rotational ring used for the 

DCSCTF measured approximately 19” internal diameter. Also noteworthy is that the UVaSCF has a vertical test 

section which allowed the TDLAT rig to be mounted horizontally. The DCSCTF has a horizontal test section, 

requiring the TDLAT rig to be mounted vertically. Figure 6 shows a comparison between the TDLAT system on the 

UVaSCF and the TDLAT system on the DCSCTF. 

The second challenge, the short test duration of the DCSCTF, called for both software and hardware 

modifications. The 50 second maximum test time is limited by the temperature of the un-cooled copper hardware on 

the DCSCTF rig.  This required streamlining of the motion control and data acquisition software used in the 

UVaSCF. Various portions of the LabVIEW 8.6 code were condensed or removed all together if unnecessary. Much 

of the extraneous code was for data communication between the PC and the motion controllers and was able to be 

replaced with simple TTL signals. The shorter test duration also motivated the decision to increase the number of 

TED boxes from one to five. This reduces the required test duration by the same factor. Figure 7 shows the modified 

TDLAT system with the top lid removed. 

 

 
      (a)                                             (b) 

Figure 6. (a) TDLAT system used for measurements on UVaSCF and (b) TDLAT system for 

measurements on DCSCTF. 

 
Figure 7. SolidWorks model of the TDLAT system.  
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As seen in Fig. 7, an adapter plate is used to interface the Newport RTM660 rotational ring with the TED boxes 

and retroreflector hardware. This allows the assembly to rotate 360° around the DCSCTF. However, due to the 

angular symmetry of the five TED boxes, the plate needs only to rotate 72° for complete imaging. Attached to the 

adapter plate are five Velmex B5990TS rotational stages and five TED boxes. The Velmex rotational stages allow 

each TED box to rotate and create a fanbeam. As seen in Fig. 7, 26° of rotation was needed to ensure the fanbeam 

encompasses the DCSCTF exit plane. 

Motion and laser control have been optimized to allow for data collection during the short test duration. Each fan 

is composed of 21 rays which are incremented by 1.3º, consequently scanning a total of 26º. Each fan is separated 

by 9º, requiring a total of 8 data sets (each with 5 fans) to complete the database.  A complete uninterrupted database 

requires between 6 and 7 minutes of test time, and thus the testing must be segmented. One data set, consisting of 5 

fans of data, was collected during each tunnel operation. The start point of the fans during next test is then offset 9º 

from the previous tunnel run. This requires 8 tunnel runs for a complete database, which is well within the test 

capabilities of the DCSCTF on a single day. 

The noisy environment of the DCSCTF created the need for several LOS measurements to be collected at each 

location and averaged. Figure 9 shows sample data from a measurement near the center of the test plane. The single 

LOS measurement shows that the peak-to-peak amplitude of the noise is on the same order as the signal itself. 

Although the noise looks to be quasi-periodic, its periods do not appear to be coupled to the period of the sample. As 

the signals are averaged over a greater number of samples, a clear absorption feature is revealed. 

For this research, 150 individual LOS measurements are collected and averaged for each laser and at each 

location. The data is acquired at 100,000 samples/sec, with 150,000 samples/channel. Therefore 1.5 seconds is spent 

collecting the data at each location. 

 
 

Figure 8. Schematic of TDLAT system. 

 
Figure 9. Single and averaged LOS sample data. 
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IV. Results 

 Prior to the installation of this system on the DCSCTF, the TDLAT system was tested on a NASA Langley flat 

flame Hencken burner, shown in Figure 10. Multiple tests were performed, including the measurement of an opaque 

object. This object was positioned on the burner surface and in the laser plane as shown in Fig. 10 (the flame was 

not utilized here). 

 A full set of data was collected based on the methods previously described. When the fanbeam path crosses the 

object, no signal is returned. This is slightly different than how laser absorption spectroscopy operates, as with 

spectroscopy the amount of absorption is dependent on the quantity and temperature of the water vapor. 

 This opaque object test is essentially a binary version of absorption spectroscopy, with only 1’s (signal is 

returned) and 0’s (signal is blocked by object). A 0 or 1 is recorded for each ray in each fan and collected into a 

matrix called a sinogram. The reconstruction is then performed on this sinogram using the Matlab function 

“ifanbeam.m”. Figure 11 shows the sinogram and the tomographic reconstruction of the opaque object. We see the 

object is the same shape and oriented in the same direction as in Figure 10. The rippling seen in this reconstruction, 

as well as the fact that the object appears a non-uniform color are data artifacts and are directly related to the use of a 

binary signal. The actual use of TDLAT is for high enthalpy flowfields, not solid objects, and thus these data 

artifacts will not necessarily be encountered. 

  

 In addition to this solid object test, data has been 

taken on the Hencken burner with the flame operational. 

Three different equivalence ratios, Φ = 0.3, 1.2, 2.0 were 

measured. Figure 12 shows sample spectra from the Φ = 1.2 condition. The measured spectra along with their Voigt 

fits are shown for all four transitions. These spectra are from a ray in the center of a fan beam, so much of the ray’s 

pathlength is within a relatively high temperature range. The favorable quality of the collected spectra was 

promising and future research will focus on completing the tomographic reconstructions. The resulting TDLAT 

temperature and water vapor concentration distributions will be compared to previous temperature measurements via 

CARS by another research group.  

 

 

 
Figure 12. Sample spectra from a center ray of TDLAT measurement on Hencken burner with Φ = 1.2. 

 
Figure 10. TDLAT system mounted to NASA 

Langley flat flame Hencken burner. Opaque object 

positioned on burner surface. 

 
 

Figure 11. Sinogram and Tomographic 

Reconstruction of opaque object. 
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The TDLAT test rig was then mounted to the DCSCTF. Heated, non-combusting measurements, as well as 

combustion measurements at an equivalence ratio of 0.5, have been collected at a facility condition simulating flight 

at Mach 5. Final tomographic reconstruction of the data is not yet complete, but preliminary analysis has been 

conducted. Table 2 summarizes the Mach 5 test conditions. 

 As mentioned previously, a complete data set is captured with 8 tunnel runs, resulting in a data set with 40 fans 

and 9° between each fan. As seen in Figure 13, this creates a dense measurement within the DCSCTF exit area. 

Originally, a finer resolution was planned utilizing 16 tunnel runs with a fan-increment angle of 4.5°, but only 8 

tunnels runs were completed on 8/16/12 due to facility complications. An attempt to collect the remaining 8 sets of 

data was made on 8/20/12, but only 4 were successful due to the same facility complications. For the current work, a 

reconstruction is being done using the 8 tests from 8/16/2012, while future work will incorporate the remaining four 

tests from 8/20/12. More detail regarding the facility configuration and conditions can be found in Reference 11. A 

TDLAT measurement can also be reconstructed using subsets of the dense data. This includes the case of data from 

a single tunnel run. Future research plans include completing a coarse reconstruction from each of the 12 successful 

tests and evaluating their likeness.  

 

 
Figure 13. Schematic of measurements from 8 tunnel runs. 21 rays in each fan, 40 fans separated by 9 

degrees. 

Table 2. Test Conditions during TDLAT measurements on DCSCTF. 

Run 

No. 

Date Avg. Period 

[seconds] 

P0 

[psia] 

T0 

[R] 

HT0 

[BTU/lbm] 

O2 

[%] 

Φ 

87 8/16/2012 38.5-46.5 95.5 2122 581.1 20.29 0.587 

88 8/16/2012 34.0-44.0 96.2 2101 573.8 21.32 0.520 

89 8/16/2012 34.0-44.0 96.2 2113 578.2 20.82 0.555 

90 8/16/2012 36.0-46.0 96.0 2125 582.2 20.91 0.549 

91 8/16/2012 39.0-49.0 96.6 2132 583.9 20.98 0.562 

92 8/16/2012 40.0-50.0 96.6 2131 583.8 21.14 0.526 

93 8/16/2012 38.5-48.5 96.4 2132 584.2 20.86 0.552 

94 8/16/2012 39.0-49.0 96.8 2162 593.9 20.93 0.510 

95 8/16/2012 40.0-50.0 97.1 2137 585.9 20.91 0.533 

96 8/16/2012 40.0-50.0 97.1 2142 587.7 20.85 0.545 

        

98 8/20/2012 40.0-50.0 98.8 2163 595.0 20.88 0.543 

99 8/20/2012 25.0-35.0 97.8 2154 592.0 20.88 0.545 

01 8/20/2012 28.0-38.0 97.7 2149 590.4 20.93 0.536 

02 8/20/2012 35.0-45.0 97.6 2132 584.3 21.03 0.547 
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 LOS temperatures have been calculated using the experimentally obtained data. Figure 14 shows the fitted 

spectra measured by KB1, KB2, and KB3 at a cold ray. As seen in Fig. 14, this ray passes through the edge of the 

tunnel exit area and presumably would see a relatively low temperature. A Boltzmann plot is shown with the 

calculated value of 938 K. Likewise, LOS data is analyzed for a hot ray and shown in Figure 15. The hot ray results 

in a calculated temperature of 1333 K. While these calculated temperatures are LOS values, and thus path-

integrated, they do show the expected temperature trends. 

 

 
Figure 14. Fitted spectra, calculated temperature, and location of a cold ray. 

 
Figure 15. Fitted spectra, calculated temperature, and location of a hot ray. 
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V. Conclusion 

The TDLAT technique has been modified for application to the NASA Langley DCSCTF. Modification of 

software and hardware allowed for successful implementation of a larger scale testing. Twelve datasets we 

successfully captured and eight of these will be used for initial analysis (for symmetry). Preliminary analysis of LOS 

measurements show promising results and give confidence in the potential of the TDLAT technique. 

Future work will first be focused on completing the tomographic reconstructions of temperature and water vapor 

concentration distribution. Studies will also be performed analyzing the impact of the density of the LOS data, i.e. 

how many LOS are utilized. More rigorous comparisons and quantitative assessment of the CFD and experimental 

results will be completed. 

Acknowledgements 

This research was supported by NASA Contract NNL11AB32P (Rick Gaffney, technical monitor) and the 

National Center for Hypersonic Combined Cycle Propulsion Grant FA9550-09-1-0611, supported by NASA and the 

AFOSR (Rick Gaffney and Chiping Li, technical monitors). Kristin Busa would like to acknowledge fellowship 

support from the National Science Foundation and the Virginia Space Grant Consortium. The authors would like to 

thank Barry Lawhorne, Michael Raiford, and Jeffrey Collins with NASA Langley Research Center for their 

operation of the DCSCTF, and Roger Reynolds with the University of Virginia for his support in the fabrication of 

the TDLAT hardware. 

References 
1Allen, M.G., “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol., Vol. 9, 1998, pp. 

545-562. 
2Hanson, R. K., Kuntz, P. A., and Kruger, C. H., “High-resolution Spectroscopy of Combustion Gases using a Tunable IR 

Diode Laser,” Applied Optics, Vol. 16, No. 8, 1977, pp. 2045-2048. 
3Busa, K., Bryner, E., McDaniel, J.C., Goyne, C.P., Diskin, G., Smith, C., “Demonstration of Capability of Water Flux 

Measurement in a Scramjet Combustor using Tunable Diode Laser Absorption Tomography and Stereoscopic PIV,” AIAA-2011-

1294, Jan. 2011. 
4Bryner, E., Busa, K., McDaniel, J.C., Goyne, C.P., Diskin, G., “Spatially Resolved Temperature and Water Vapor 

Concentration Distributions in a Flat Flame Burner by Tunable Diode Laser Absorption Tomography,” AIAA-2011-1291, Jan. 

2011. 
5Bryner, E., Sharma, M.G., Goyne, C.P., McDaniel, J.C., Snyder, M.C., Krauss, R.H., and Martin, E.F., “Tunable Diode 

Laser Absorption Technique Development for Determination of Spatially Resolved Water Concentration and Temperature,” 

AIAA 2010-299, Jan. 2010. 
6Kak, A.C., and Slaney, Malcolm., Principles of Computerized Tomographic Imaging, Society of Industrial and Applied 

Mathematics, 2001. 
7“The Langley Direct-Connect Supersonic Combustion Test Facility Brochure.” Hypersonic Airbreathing Propulsion Branch. 

NASA Langley Research Center, 11 Oct. 2005. Web. 1 Mar. 2012. <http://hapb-

www.larc.nasa.gov/Public/Facilities/Dcsctf/Wte_info/DCSCTF_brochure.html>. 

8Zhou, X., Jefferies, J.B., and Hanson, R.K., “Development of a fast temperature sensor for combustion gases using a single 

tunable diode laser,” Applied Physics B, Vol. 81, 2005, pp. 711-722. 
9Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., Perevalov, V., Tashkun, S.A., and 

Tennyson, J., “HITEMP, the high-temperature molecular spectroscopic database,” Journal of Quantitative Spectroscopy and 

Radiative Transfer, 111:21392150, 2010. 
10Goldenstein, C., (Stanford University), personal communication. 
11Capriotti, D.P., and DePiro, M.J., “Testing of the Durable Combustor Rig in the NASA Langley Direct Connect Facility,” 

JANNAF 45th CS/33rd APS/33rd EPSS/ 27th PSHS Joint Subcommittee meeting, Monterey, CA, 2012. 


