Assessing Tsunami Vulnerabilities of Geographies with Shallow Water
Equations

Assessing Tsunami Vulnerabilities of Geographies with Shallow
Water Equations

Rifat Aras & Yuzhong Shen
Department of Modeling, Simulation, and Visualization Engineering
Old Dominion University
rarasQ01@odu.edu. yshen@odu.edu

Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we
develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint
Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes
equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific
contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different
tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we
utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy
computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled
shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available
software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to

showcase ideas.

1.0 INTRODUCTION

Water inundation preparedness is an
important component of early response
systems for disasters like tsunamis,
flooding, and water inundation. Realistic
inundation models play an important role in
many aspects like finding coastal hazard
risks, assessing vulnerable zones, and
taking necessary precautions to mitigate
damage from inundation.

Shallow water equations are a set of
hyperbolic partial differential equations
(PDESs) that were introduced 140 years ago
[1]. In cases where the horizontal length of
the simulation domain is much greater than
the vertical length, these equations are
obtained by depth integrating the infamous
Navier-Stokes equations and widely used to
model flows in rivers and coastal areas.

There are many strategies adopted for
solving hyperbolic PDEs of shallow water
systems, however our particular problem
requires a solution to be (1) well-balanced
for lake-at-rest problems, in which stationary
steady states are preserved, (2) positivity
preserving to handle dry and shore areas,
and (3) able to support linear friction
models. Therefore in this work, we
employed a second-order well-balanced

52

positivity preserving central-upwind scheme
for solving the Saint-Venant system [2].

In order for such a model to be useful as a
decision support mechanism, it has to
comply with certain performance
requirements. Faster-than-real time
simulation of the model enables decision
makers to observe the simulation, try some
number of precautionary measures, and
choose the optimum one. Unfortunately, it
becomes impossible to simulate a
sufficiently high resolution model in real time
by using only the computational power of a
CPU. General purpose computation on
graphics processing units (GPGPU) can be
described as a paradigm of utilizing high-
petformance many-core graphics
processing units (GPUs) for computation
tasks that are normally handled by CPUs.
With the transition from fixed to
programmable graphics pipeline, software
developers gained the ability to use multiple
computational cores on a GPU for non-
graphics data without the explicit need of
managing parallel computation elements
such as threads, shared memory, and
message passing interfaces [3].

In this work, our main contribution is
implementing a system that uses the
bathymetry, elevation, and water depth data



of a geography to create the water
inundation model. Our proposed system
utilizes XNA Game Studio 4.0 [4] to create
an interactive experimentation environment
to the user. We also harnessed the
computational power of GPU in every step
of the simulation to be able to run the
simulation faster-than-real time to allow
decision makers to experiment with certain
sceharios and possible outcomes at a fast
pace. We have used shaders written in High
Level Shader Language (HLSL) in order to
delegate heavy computations to the GPU,
thus taking the entire load off the CPU that
can be used for other tasks.

The remainder of the paper is organized as
follows. Section 2 describes the shallow
water equations that form the basis of this
work and explains the implementation
details of the algorithm. Section 3 mentions
about the validation methodology of the
model and gives details about the
simulation experiment we conducted using
the presented model. Finally, Section 4
concludes the paper and discusses future
work.

2.0 METHODOLOGY

2.1 Shallow Water Equations

The shallow water equations consist of a set
of hyperbolic PDEs and can be used to
model physical phenomena such as
tsunamis, tidal waves, flooding, and other
types of water inundation. In vector form,
shallow water equations in two dimensions
canh be written as in Eq. (1).

53

w hu

L2, gtw B2
w—F 2

hu

hvdy huv »

hv
+ huv
(hv)* g(w - B)*

L(w — B) 2
0

=|—g(w—DB)B,

|—g(w— B)B,,

- 0

—ahu

+H1+ 8w -B)| (D
—ahv

14+ 8w —B)

The dependent variables in these equations
are w (representing surface elevation) and
hu and hv (representing horizontal and
vertical discharges respectively). B
represents the bottom elevation (Figure 1).
In a more compact form the equation can be
written as

Qt = _F(Q)x - G(Q)y + Sb(Q;B)
+S5(Q.B), (2)

where @ is the vector of dependent
variables, F and G vectors represent fluxes
along horizontal and vertical directions, and
Sy and S represent source terms from the

bathymetry slope and friction respectively.



Figure 1. The visual representation of the
dependent variables and the bottom
topography for the 1D case.

2.2 Central-Upwind Scheme

In order to solve the presented equations,
we need a well-balanced positivity
preserving scheme. The central-upwind
scheme proposed by Kurganov and Petrova
[2] is a good candidate, because it is
capable of preserving steady states (lake at
rest) and also it guarantees the positivity of
the fluid depth (near shore areas).

Figure 2. The staggered grid used to store
dependent variables (blue squares) and the
bottom topography values (red dots).

In this scheme, the dependent variables w,
hu, hv, and the bathymetry data B are
stored in a staggered grid (Figure 2). The
bottom topography is represented as a
continuous piecewise bilinear
approximation. Likewise, the dependent
variables at integration points are also
reconstructed from non-oscillatory bilinear
approximation obtained from cell averages
(Figure 3).

54

Figure 3. The slopes of the dependent
variables are constructed from the cell
averages.

To prevent spurious oscillations that would
cause instability issues in the simulation, the
slopes of the dependent variables have to
be reconstructed carefully. Flux limiters,
also known as slope limiters, are
mechanisms that are used to prevent
oscillations, thus making the system
solution total variation diminishing. In this
work, we used a generalized minmod flux
limiter that was originally used by Kurganov
and Petrova [2]. The slopes of the
dependent variables in one dimension are
therefore found by the function,

Q, = MINMOD(8f, c, 8b), (3)

2y

i+1_
where f, ¢, and b are forward (Q =

Qit1_gi-1 Qi-gi-1
central (T)' and backward ( ~ )
slope approximations and © is a parameter
that controls how dissipative is the limiter
(Figure 4). The MINMOD function is defined
as

MINMOD(a, b, c)
min(a, b,c),{a,b,c} >0
= imax(a,b,c),{a,b,c} <0 (1)
0.



Figure 4. Slopes of the dependent variables
are constructed by using a flux limiter.

After slopes are constructed for the
dependent variables, one obvious problem
with this construction is that we can obtain
negative values for the depth component
(Figure 4). As the eigen value of the
Jacobian of the shallow water equations
being

u+./gh, (5)

having negative values for the depth
component k will break down the
simulation. In order to prevent this from
happening, we need to correct the water
elevation slopes of the cells that have
negative values for the depth component.
This is simply performed by moving the
problematic negative value up to the
topography and recalculating the slope of
the cell by using the modified value and the
original average value (Figure 5).

Figure 5. The slopes that result in negative
depth values are corrected (red slopes).

After slopes are corrected, the flux values
for the cell interfaces are calculated

55

according to the central-upwind scheme.
For the cell interface between cells i and
i+1, the two neighboring values are
obtained by using the corresponding slopes,
and these values are used to compute the
flux function (Figure 6) (see [2] for details).

Figure 6. For each cell interface, the two
neighboring values are obtained from the
slopes to compute the flux value.

Finally, the computed flux values and
source terms are plugged into Eq. (2) and
time discretization is performed by using the
following second order Runge-Kutta ODE
solver,

Qi = QF + AtR(Q™);;
1 1
Qg}"'l = EQ;’} + E[Q:j + AtR(Q*)ij], (6)

where R(() is the right hand side of the Eq.
2).

2.3 Algorithmic Break Down and
Implementation
The central-upwind scheme presented in
the previous section can be realized as an
algorithm that consists of several passes. A
single step of the simulation is broken down
into two Runge-Kutta substeps. In each of
these substeps, the slopes of the dependent
variables are reconstructed, flux
computations are performed, and the time
integration is computed.

The dependent variables and intermediate
values are stored on graphical processing
unit as buffers. In XNA programming, these
buffers are represented as
RenderTarget2D objects.



Water Speed
Pass
Y
CFL Condition Water Speed
Pass Pass
Bilinear Bilinear
Reconstruction Reconstruction
y
Flux Evaluation Flux Evaluation|
Pass Pass
¥ ¥
Runge-Kutta Runge-Kutta
Substep1 Substep2

Figure 7. The flow chart of the algorithm.

2.3.1 Water Speed Pass

Water speeds in horizontal and vertical
directions are obtained by dividing the
dependent variables hu and Av by the water
height. In shallow water simulations, fluid
speeds are required to determine how large
simulation time steps can be and to
compute numerical flux values. As we

. hu hv
obtain speed values by — and ~ one

apparent problem is having very small
height values. Due to floating point precision
issues, when we have very small height
values, we naturally end up with very high
and erroneous speed quantities. This is
definitely a problem that would cause very
small simulation time steps and can be
corrected by desingularizing the
computation of speed values for small
height values. In this work, we adopted the
approach of Kurganov and Petrova [2] and
used the following formula to compute
speed values at shoal zones:

. V2h(hu)
u" =
J h* + max(h4, 5y

@)

where ¢ is a small number chosen
according to the machine floating point
precision. After correcting the speeds for
small heights, we need to update the
corresponding hu and hwv values by h = u”

56

and h = v" in order to keep the consistency
of the simulation variables.

2.3.2 CFL Condition Pass

The Courant-Friedrichs-Lewy (CFL)
condition [3] is a necessary condition for
conhvergence when solving hyperbolic
PDEs. For shallow water equations, this
condition translates to the condition of
simulation time step having to be small
enough so that a wave does not pass a
whole grid cell during that time step.

In order to find the global fluid velocity value
for the entire simulation domain, we need a
reduction operation for the water speed
values that were obtained from the previous
pass. Given a buffer that contains the speed
values and whose size is n X n, we can
implement the reduction operation as a
progressive down-scale operation, in which
the new value of the pixel is set to the
maximum of the set of pixels that this pixel
is sampled from (Figure 8).

alb May
G‘N

Figure 8. The down-scale operation is
performed progressively until we obtain a
resultant buffer that is small enough to be
processed by the CPU.

2.3.3 Bilinear Reconstruction Pass
The vertical and horizontal slopes of the
dependent variables w, hu, and hv are
reconstructed by using a branchless
implementation of the generalized minmod
flux limiter [6] (Figure 9).




)

S

| minmod3( t4 a, td b, €y

theta)

res = minmod(theta * a ,
minmod(res , b);

theta * c);

minmod ( 1 : a5 b)

res = (abs(a),
res * (sign{a)+

(b));
(b)) * 0.5fF;

Figure 9. Implementation of the MINMOD
limiter in HLSL.

As stated before in section 2.2, special care
should be taken after the slopes are
reconstructed as these slopes may end up
with negative depth values. To prevent this
from happening, the midpoints at the cell
interfaces are tested against the bathymetry
information, if the slope is found to be
causing negative depth value, it is
corrected.

2.3.4 Flux Evaluation Pass

After the slopes are determined for the grid
cells, these are used to approximate the
values of the dependent variables at cell
interfaces. According to the central-upwind
scheme, we need two values for each cell
interface that are approximated from the
slopes of the two neighboring cells that
share the interface.

The horizontal (F) and vertical () flux values
are computed separately according to

h 2 1 h h T
F@):OM%%%+sz—Bﬁ3§¥§5
= (hu)(hv) (hv)?
G(Q) = (hv,ﬁ’w —

+2ow-B7) @
Tt

57

For implementation details of the central-
upwind scheme, refer to the original work of
Kurganov and Petrova [2].

2.3.5 Runge-Kutta Substep

In this pass, the flux values computed at the
previous flux evaluation pass are used to
advance the simulation. The source terms
that are caused by bottom topography (bed
slope) and friction are also computed and
included in this pass. In this work we are
using a second order Runge-Kutta solver, in
which the simulation is advanced in two
separate substeps. In the first substep, the
simulation is advanced one time step to
obtain the intermediate values for the
dependent variables (Eq. (6)). These
intermediate values are then used as inputs
to the second series of passes to complete
the time integration (orange shaded steps in
Figure 7).

3.0 VALIDATION & EXPERIMENT
Like any other modeling and simulation
study, validity of a model plays an important
role in its credibility in decision making
processes. In this work, we tried to
reproduce the results of a real-life
experiment that was conducted in a
controlled environment.

In the work of Synolakis et al. [7], the
authors emphasize the necessity of
verification and validation of the numerical
models used in emergency planning. They
present a set of analytical, laboratory, and
field benchmark tests that can be used to
validate numerical water inundation models.
In our study, we included their conical island
experiment and recreated their experiment
setup in our virtual laboratory as accurately
as possible (Figure 10).



12.96m

Figure 10. The recreated conical island
experiment. Because of the lack of data
about wave characteristic, we approximated
the wave as a sine wave.

The data from the physical experiment and
our virtual experiment are collected and
plotted for easy compariscon of the two data.
Although, there was not enough data about
the solitary wave other than its height, we
were able to obtain very close results,
capturing the essence of the physical
experiment (Figure 11).

0.05

Wave height (m)

wof timesteps

(@)

Wave height (m)

# of timesteps

(b)

Figure 11. The results of the (a) physical
experiment and (b) our simulation.

58

For showcasing our study, we have chosen
the Virginia Beach area, particularly the
area around the Virginia Beach Convention
Center. The bathymetry and surface
elevation data are obtained from National
Oceanic and Atmospheric Administration’s
{(NOAA) National Geophysical Data
Center[8]. The data, which has a cell size of
10 meters, for the whole Virginia Beach
region was preprocessed and converted to
comma separated value (CSV) format to be
fed to our simulation (Figure 12 and Figure
13).

4.0 CONCLUSION

Recent disasters show that water inundation
readiness and emergency planning
processes are vital necessities to prevent
aftermath. Credible water inundation models
are the important elements for emergency
planning processes. Decision makers need
valid, interactive, and fast models in order to
respond to situations in a timely fashion.

In this work, we presented a water
inundation model that is based on shallow
water equations. We used a well-balanced
positivity preserving scheme to solve the set
of hyperbolic PDEs. By harnessing the
computation power of GPUs, we were able
to run a high resolution simulation faster-
than-real time on a consumer grade laptop
PC. To establish the credibility of the
presented model, we recreated a controlled
experiment and compared the physical
results to our virtual results.

The current model supports static
bathymetry / elevation data that is organized
as a regular grid. One feature we want to
add to our application is the ability to alter
the terrain before running the simulation.
This way, the decision makers would be
able to see the possible effects of certain
actions such as adding barriers to parts of
the terrain.

5.0 REFERENCES

[1 A. J. C. d. Saint-Venant, "Th eorie
du mouvement non-permanent des
eaux, avec application aux crues



[2]

[3]
[4]

[3]

[6]

des rivi'ere at "a l'introduction des
war ees dans leur lit," C. R. Acad.
Sci. Paris, pp. 147-154, 1871.

A. Kurganov and G. Petrova, "A [7]
Second-Order Well-Balanced
Positivity Preserving Central-Upwind
Scheme for the Saint-Venant
System," Communications in
Mathematical Sciences, vol. 5, pp.
133-160, 2007.

NVIDIA, "NVIDIA CUDA C [8]
Programming Guide," 2010.
Microsoft. (06.28.2011). XNA Game
Studio 4.0. Available:
http://msdn.microsoft.com/en-
us/library/bb200104.aspx

R. Courant, K. Friedrichs, and H.
Lewy, "On the Partial Difference
Equations of Mathematical Physics,”
IBM Journal of Research and
Development, vol. 11, pp. 215-234,
1967.

T. Hagen, M. Henriksen, J.
Hjelmervik, and K. A. Lie, "How to
solve systems of conservation laws
numerically using the graphics
processor as a high-performance
computational engine," Geometric

59

Modelling, Numerical Simulation,
and Optimization, pp. 211-264,
2007.

C. Synolakis, E. Bernard, V. Titov,
U. Kano lu, and F. Gonzalez,
"Validation and verification of
tsunami numerical models," Tsunami
Science Four Years after the 2004
Indian Ocean Tsunami, pp. 2197-
2228, 2009.

L.A.Taylor, B. W. Eakins, K. S.
Carignan, R. R. Warnken, T.
Sazonova, D. C. Schoolcraft, and G.
F. Sharman, "DIGITAL ELEVATION
MODEL OF VIRGINIA BEACH,
VIRGINIA : PROCEDURES, DATA
SOURCES AND ANALYSIS" U. S.
D. o. Commerce, Ed., ed. Boulder:
National Geophysical Data Center
Marine Geology and Geophysics
Division, 2008.



6.0 APPENDIX

Figure 12. Visualization of the Virginia Beach area simulation as waves hit the shore line.

Figure 13. Visualization of Virginia Beach area simulation as waves approach the shore line.




Figure 14: The side view of the wave that approaches Virginia Beach shore line.

61



