The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

Presented by Lisa W. Griffin
Chief, Fluid Dynamics Branch – ER42
NASA Marshall Space Flight Center
Lisa.W.Griffin@nasa.gov

Advances in Rocket Engine Modeling and Simulation, and its Future
Tokyo, Japan
September 26 – 27, 2012
Marshall Space Flight Center (MSFC) is one of ten NASA field centers. MSFC supports the Agency goals of lifting from Earth, living and working in space, and understanding our world and beyond by providing propulsion, space transportation, space systems, and scientific research.

MSFC is the NASA-designated center for the development of space launch systems. The center is particularly well-known for propulsion system development.
ER42 is comprised of four teams of approximately forty-five employees.
The Fluid Dynamics Branch (ER42) is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Because of the skills in the branch, ER42 also works non-propulsion items such as for telescopes and payload racks on an as needed basis.
ER42 conducts all levels of fluid dynamics analysis from scaling methods through 3D Unsteady CFD.

Scaling Methods

Gain / Phase Plots

System Stability Modeling

Lump Parameter Modeling

Finite Element Modeling

Computational Fluid Dynamics
ER42 conducts and supports testing for hardware and technology development and verification, and analysis validation

- Primary responsibility for cold flow and scale model acoustics tests
- Secondary responsibility for hot system and component testing
The Main Propulsion System (MPS) is defined as the propellant delivery system from Tank to Engine Interface.

- Tank with all of its internal components
- Valves
- Feedlines with all of its internal components

ER42’s primary analysis tool for MPS is CFD.
ER42 performs high fidelity CFD analysis of complex geometry and/or complex accelerated propellant tank sloshing to determine slosh modes and their respective frequencies, amplitudes, and damping characteristics.

Next challenges with future simulations include implementation of massively parallel gas-liquid interface tracking methods and efficient hybrid implicit/explicit methods to address disparate time-stepping requirements.
LIQUID PROPELLANT TANKS – PRESSURIZATION AND DRAIN

Assessment of Anti-Vortex Baffle Design

- Tank Pressurization
 - Flow through diffuser
 - Interaction of ullage gas with propellant surface (mass transfer, multiphase heat transfer, surface evaporation, chemical species)

- Tank Drain
 - Analysis of vortical flow in pipe
 - Assessment of anti-vortex baffle efficiency

Near Term Work
- Validation of robust method for simulating mass transfer across the gas-liquid interface

LH2 Tank Pre-press Analysis

- Temperature
- Helium concentration
ER42 conducts high fidelity CFD simulations of valves to predict fluid flow patterns, mean pressure drops, and unsteady fluid environments.

Future work aimed at implementation of valve component force and friction models.
ER42 performs high fidelity CFD simulations of liquid propellant feedlines to predict pressure drops through bends, articulating joints, and splits, flow uniformity due to bends and wakes, and unsteady pressure environments.
ER42 supports the design, development, and certification of high-speed turbomachinery

- Quick turnaround CFD design parametrics
- Time-accurate rotor-stator CFD analysis
- Highly instrumented pump waterflow test
- Component and engine test support
Unsteady Loads Development

- All flow features which significantly modify fluid forcing functions of interest must be modeled.
- Must show spatial and temporal resolution of unsteady forcing functions.
- Full 360 degrees models are necessary for most rocket turbines due to large regions of separated flow. Periodic models corrupt the unsteady forcing functions and are not sufficient.

Spatially Resolved First Rotor
~550 Million Grid Cells

Toroidal inlet manifold causes significant distortions of unsteady forcing functions in downstream blade rows.

Instantaneous Pressure Contours

Instantaneous Entropy Contours

Vortex Shedding

Expansion Wave

Highly Separated Flow

Bow Shock

Instantaneous Pressure Contours

Fuel Turbine Computational Domain
Unsteady Loads Delivery

- Unsteady pressure history saved at all points of all blade surfaces. Must show spatial and temporal resolution of unsteady forcing functions.
- Unsteady pressure histories from blade surfaces are interpolated onto stress grids for structural analysis. All blades must be used if rotor-rotor or stator-stator effects are to be captured.
- Unsteady pressures may be delivered in temporal or frequency domains.
Testing of Highly Instrumented Turbine Models in Scaled Air Conditions
- Steady and unsteady pressure loadings
- Interstage cavity pressures
- Performance mapping over a wide range
- CFD validation

Fourier Transforms of First Stage Blade Suction Side at 13% Axial Chord and 50% Span Location

Highly Instrumented Turbine Test Article

On Shaft Data Acquisition System
Comprehensive steady and unsteady pump performance is evaluated at scaled engine operating conditions. Dense instrumentation suites, velocimetry, and flow visualization are utilized in mapping pump characteristics.

Low pressure pump with upstream main propulsion system element simulation

2-blade inducer with on-rotor dynamic force measurement system
Evaluation of steady pump performance parameters, cavitation oscillation trends, and high-speed flow visualization provides early risk reduction for a turbopump during its preliminary design cycle. Sometimes, comprehensive waterflow is used to identify unsteady loadings and/or performance deficits within certified flight pumps during anomaly investigations.
Time accurate CFD provides insight into the complex flow field behind higher order cavitation. Higher order cavitation is a potential forcing function for primary inducer bending modes.

Non-cavitating CFD is used to identify critical unsteady flow interactions between inducer blades and cavitation suppression grooves. These interactions are thought to promote higher order cavitation oscillations within the cavitating turbopump. The time-accurate CFD predicts slowly rotating/high cell count progressions very similar to higher order cavitation instabilities measured in workflow test.

CFD calculations effectively capture tip vortex dynamics for inducers operating with minimal tip clearance (without cavitation suppressor).
Higher order cavitation oscillation coincides in frequency and modal shape with primary vibration modes of inducers. Can immersed blade damping provide us fatigue margin?

Immersed damping is evaluated under no-flow conditions by experiment and with CFD under modally accurate blade motion. System damping is measured via modal test, and the oscillatory damping forces are extracted from the CFD prediction.

The suppression of lower order cavitation oscillations may bring about higher order flow instabilities which can resonate primary inducer blade modes of vibration. A combination of CFD and experiment is being used to understand the significance of immersed blade damping. Our system damping prediction capability is evolving in a rigorous manner validated by experiment.
This combined Fluid Mechanics-Experimental effort showcases our disciplined penetration of complex propulsion system dynamic environments.

Fraction of critical damping increases drastically as inducer blade tip displacement increases during workflow experiment. Y-axis above is damping, and X-axis is inducer inlet cavitation number. With decreasing cavitation number, random cavitation noise loads increase and deflect blades. Damping was extracted from high frequency strain gages mounted on inducer blade root.

CFD-based simulation of 2-blade inducer displacing water at high frequency. Damping is developed via the formation of flow vortices near the inducer tip.
Scope of branch responsibility in support of liquid rocket engine thrust chamber assembly design & development

- Large and small engines
- Analysis and testing
 - Performance
 - Pressure, acoustic and thermal environments
 - Combustion stability

- Upper stage engine start transient
- Test cell design & operation
- Manifold & Valve
- Igniter
- Stability rating bomb test simulation
- Cold flow testing in Nozzle Test Facility
COMBUSTION STABILITY ASSESSMENT APPROACH & DISCIPLINES LEVERAGED BY ER42

• Branch asked to assess the combustion dynamics / stability of an engine design
 • Chug
 • Acoustic
 • Other oscillation modes (e.g., buzz from upstream supply system)
• Common to all three generic stability types are two main assessment questions:
 • What is the margin associated with the stability type?
 • Requires accepted definition of stable, unstable, and marginal
 • What margin is acceptable for a given engine design?
• Assessment comes from a combination of two approaches:
 • Analytical
 • Linear: system stability approaches; energy based approaches
 • Non-linear: limit cycle waveform evaluation
 • Testing
 • Non-linear: waveform characterization of damp times and amplitudes

• Disciplines
 – Unsteady Fluid Transients and Dynamics
 – Heat Transfer and Thermodynamics
 – Acoustics
 – System Dynamics and Linear Analysis (Stability Theory, State Space, Transfer Matrix)
 – Electronics (Fluid Circuit Analogies, Linear Analysis)
 – Mathematics (DDEs, Model Development, Linear Analysis)
 – Control Engineering (System Identification, Nyquist Plots, Bode Plots)
 – Stability Theory (Nyquist Criterion, et al.)
 – Signal Analysis (Data Characterization and Reduction)
 – Instrumentation and Data Acquisition
 – Combustion Devices and Propulsion
 – Combustion Processes (Spray and Flame Dynamics, Mixing, Atomization, Vaporization, etc.)

• Tools
 – PC-Signal, ROCCID, NASTRAN, in-house lumped parameter / state space models, in-house transfer matrix models, in-house impedance models
 – Loci-CHEM, Loci-STREAM, ANSA
COMBUSTION STABILITY ASSESSMENT: MODE SHAPE IDENTIFICATION

- Example engine test showed 1T mode during program
 - Good sensor installation made tangential mode assessments reliable
 - Allowed for mode spatial decomposition

Test 21 at time 141 seconds

\[
p(r, \theta, t) = \frac{J_1(\lambda_0) \frac{r}{R}}{J_1(\lambda_0)} \left(\psi_1 \cos(2 \pi f_1 t + k_1 \theta + \phi_1) + \psi_2 \cos(2 \pi f_2 t + k_2 \theta + \phi_2) \right)
\]

RMS Pressure Contour

Kulite Instrument Orientation

\[
\hat{p}(r, \theta) = \frac{\sqrt{2 J_1(\lambda_0 + R)}}{J_1(\lambda_0)} \sqrt{(2 \cdot \psi_1 \cdot \psi_2 \cdot \cos(2 \cdot k \cdot \theta + \phi_1 \cdot \phi_2) + \psi_1^2 + \psi_2^2)}
\]
Example engine test data - 1L mode instability exhibited during testing program

- ~300 – 400 Hz stable to unstable signal
- **New methods created to judge spontaneous stability**
 - Offered new way to approach characterizing signal via statistics and frequency variability
 - Gave metrics on how to divide stable vs. unstable
- **New methods created to judge dynamic stability**
 - Assess statistical character of data prior to bomb
 - Track when amplitudes reach back within ‘statistically significant limits’
Branch analytical models encompass:

- Classical linearized stability models
- Computational Fluid Dynamics (CFD)
- Finite element modeling (FEM)

- Linearized models are used for chug and acoustic mode evaluations
 - State-space and impedance models
- CFD and FEM used to better characterize complex flowfields and geometries
 - Accounts for distribution of fluid properties
 - Coupled acoustic modes better evaluated using CAD geometries and CFD inputs

\[
x(\omega) = \frac{\bar{X} \sin(\omega(\tau_{x} - \tau_{f}))}{\sin(\omega\tau_{f}) + \theta\omega\cos(\omega\tau_{f})} \\
y(\omega) = \omega \\
z(\omega) = \frac{F \sin(\omega(\tau_{y} - \tau_{f}))}{\sin(\omega\tau_{f}) + \theta\omega\cos(\omega\tau_{f})}
\]
Objective of Improvements

- Advance the predictive capability of current, state-of-the-practice tools and methodologies used in combustion stability assessments
- Facilitate
 - Confident identification & characterization of combustion instabilities
 - Successful & efficient mitigation during propulsion system development
- Minimize development costs & improve hardware robustness

Approach to Improvements

- Improve state-of-the-practice stability assessment capability by use of higher-fidelity, physics-based information either integrated into the engineering tools or used separately in the assessment process
- Extract physics-based models/information from focused state-of-the-art CFD simulations
- Validate new capability by exercising the improved capabilities on relevant experiments

*Courtesy of W. Anderson/Purdue University
Instantaneous 2-D snapshots from a 3-D non-reacting simulation of a gas-centered swirl coaxial element

RANS simulation of a reacting like-on-like impinging doublet element

X-Z Planes, Contours of T (K)

Larger momentum of LOX jets displaces RP1 jets

RP1, Soot and CO near faceplate
Immediately reacts with LOX

(Flowfield is periodic in X and Z)

Ongoing improvements for injector CFD
- Flamelet formulation for efficient simulation of reacting flows
- VOF & atomization for 2-phase flow
- Low dissipation schemes better resolving turbulence & acoustics
Scope of branch responsibility in support of solid rocket motor design & development
• Large booster-class motors
• Small motors-ullage settling, booster separation & launch abort
• Performance
• Environments-pressure, acoustic & thermal
• Stability

Areas of erosive burning potential on large motor

Aft dome heat transfer coefficients
Pressure contours
Mode shapes from finite element analysis
Hot Fire Oscillatory Pressure Characteristics
Interpolated Average of ALL HPM + RSRM static tests – log scale
Temperature contours during ignition
SOLID ROCKET MOTOR THRUST OSCILLATIONS: WHY ARE THEY A CONCERN?

• SRM thrust oscillations during flight can deliver forced accelerations to vehicle structure and acoustic mode frequencies
 • Space Shuttle System
 • Arianne 5

• If these forced accelerations match appropriate vehicle structural modes, then vehicle resonance can occur
 • Ares I
SOLID ROCKET MOTOR THRUST OSCILLATIONS: CFD INPUTS TO INCREASED UNDERSTANDING OF FLOWFIELD

Ongoing Improvements
- Efficient LaGrangian particle tracking
- 2-phase capability to model slag dynamics
- Acoustic source location and mode extraction from CFD results

(1) Vortex shedding within internal SRM flow field causes pressure perturbations

(2) Wave generation rate tunes with SRM 1L, 2L, 3L acoustic modes

(3) 1L, 2L, 3L acoustic mode shapes create subsequent thrust oscillations

Oscillations in flow over rectangular cavities

(a) Schlieren, $M=0.64$

(b) Run 2M6, $M=0.6$
The ignition transient is a critical part of motor operation
Elevated thrust rise rate is too high threatens vehicle structural integrity
CFD ignition simulation
- As-cast motor geometry mesh with ~ 150M cells
- Simulation execution complete on 2400 CPUs in less than 2 weeks
- Results are being used to help understand test stand dynamics issues

Pressure field during first ~ 0.6 s of large motor ignition transient

Ongoing Improvement Efforts
- Efficient LaGrangian particle tracking
- Propellant grain recession capability to enable appropriate propellant geometry during longer transient simulations
ER42 Develops the Fluid and Acoustic Environments for Launch
- Liftoff Acoustics
- Overpressure
- Sound Suppression
- Liftoff Debris Transport
- Hydrogen Entrapment

ER42 Uses Multiple Levels of Analysis and Testing to Accomplish this Work

1D Linearized Physics Models

Flight Tests

Scale Model Tests

CFD
Overpressure Predictions Using Analytical Models

- **Broadwell & Tsu Model**: Linearized 1-D physics-based model for overpressure in a ducted launcher
- **4-wave model**: Acoustic modification to incorporate resonant conditions
- **Attenuation Model**: Empirically based on Shuttle data or other motor/engine correlations
- **Knockdown Factors for water suppression or pressure wave diffraction**: Empirically-based or CFD simulation-based
- **Margin**: Technical agreement based on CFD simulations and unknown
- **Improvement**: Continually improve models based on CFD, Test data, and Flight data
CFD has recently shown to represent overpressure very accurately without the inclusion of water

- Demonstrated ability to capture IOP and DOP waves at several locations for dry tests

Provides ability to address limitations of Analytical models

- Accounts for complex flow scenarios and three-dimensional launch pad geometry

Provides parametric studies where unknowns currently exist

Ongoing improvements include modeling water suppression systems, multiphase solid booster effluent, and capture higher frequency spectral content
Liftoff noise is generated by the mixing of rocket exhaust flow with the surrounding atmosphere and its interactions with surrounding launch pad structures.

ER42 creates initial liftoff acoustic environment derived from Saturn V, Space Shuttle flight data, and Ares I-X flight test data, for the development of Ares I and the proof-of-concept vehicle, Ares I-X. Parametrics and identification of sources from CFD

Use acoustic scale model test to validate liftoff acoustic environments and water sound suppression system design.
• Determine model scale using Strouhal Number

\[\text{St} = \left(\frac{f_d}{V_1} \right) = \left(\frac{f_d}{V_2} \right) \]

• Design test article to this scale; fire; acquire data.
• Data Processing

Typical pressure time history with analysis window (a) and analysis window overlaid on chamber pressure measurement and RMS OASPL time history (b) and a one third octave plot for the test data compared to the scaled data (c).
ASMAT VALIDATION OF CFD (COMPARISONS OF FREQUENCY WITHIN DUCT)

• Simulations of 5% scale rocket to model transient startup of motor

• Validated pressure temporal/spectral accuracy of CFD vs test data.

• Simulations showed good correlation with test data.
 – Matched pressure content above deck to 1000-1500 Hz
 – Matched pressure content below deck to 2000-3000 Hz

• Provided rationale and confidence to use CFD to predict environments for full-scale vehicles (up to ~150 Hz)
Solution: Implement hybrid approach of CFD + Computational Aero Acoustics (CAA) for liftoff acoustic fields

- Use high-fidelity CFD modeling to capture important plume physics (multi-phase plume, plume mixing and impingement, gas-water phase effects from deluge, etc.)
- Capture acoustic sources originating from plumes, impingement, capture water suppression effects
- Propagate using CAA from acoustic source surfaces enclosing noise source regions

Which CAA method is best suited for this application?

- CAA acoustic field propagation method must be able to resolve reflections, refraction and attenuation from interaction with structures such as launch platform and tower
- Two approaches under evaluation:
 - Boundary Element Method (BEM)
 - Farfield high-order Euler solution
CHALLENGE: IDENTIFICATION OF THE ACOUSTIC SOURCE REGIONS

- Major challenge arises in defining envelope of source regions for handover from CFD to CAA
- Plume boundary shape is quite complex due to interaction with launch pad
- Example: Visualization of Noise Source regions for ASMAT Plume Impingement

Iso-surface of Acoustic Source regions
CHALLENGE: SIMULATION OF WATER MITIGATION IN CFD

- Using Lagrangian Particle model to simulate water injection into launch pad plume environment for SLS concepts, Space Shuttle, and scale tests.
- Injecting water at up to 200,000 gal/min
- Simulating up to 30M active particles
- Liquid drop emission from booster holes, trench deflectors, or from rainbird systems
- Modeling water break-up and phase change
- Considerable changes shown in turbulent kinetic energy on deck, plume temperature, and ignition overpressure propagation.
The Fluid Dynamics Branch at MSFC has the mission to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals.

The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events.

ER42 supports projects from design through development, and into anomaly and failure investigations.

ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.