Human Health and Performance Academy Lecture

Visual Impairment and Intracranial Pressure (VIIP):

What is it and what does it tell us about
Spaceflight Physiology?

Jennifer Fogarty, PhD
Clinical Translational Scientist
Space and Clinical Operations Division
Human Health and Performance Directorate
January 17, 2013
Contributors

- Christian Otto
- Dave Francisco
- JD Polk
- Ashot Sargsyan
- Doug Hamilton

- LSAH - epidemiology
- BDRA – increment roll up
- HRP HHC Element
- VIIP RCAP
- VIIP IWG
Agenda

• Duration of Spaceflight
• Historical Context
• Spaceflight Physiology
• Data Collected
• Countermeasures
• Transition to Operations

• Visual Impairment and Intracranial Pressure
 – Incidence
 – Vascular, Central Nervous, Ocular components
 – Cardiovascular Physiology Refresher
 – Fluid shift
 – Imaging of the Eye and Evidence
 – Theory - ICP
 – Clinical Practice Guideline
Human Spaceflight Experience: The Long and the Short of it...

- Characteristics of the Vehicle
- Habitat Environment
- Partial Gravity Exposure
- Countermeasure Availability
- Physiological, Medical, Environmental Data

Flight Duration

Number of individual exposures

1 day or less
1 week
1-2 weeks
2-3 weeks
3 wk-1 mo.
1-2 months
2-3 months
3-4 months
4-5 months
5-6 months
6-7 months
7-8 months
8-9 months
9-10 months
10-11 months
11-12 months
12-13 months
13-14 months
14-15 months
Historical Perspective

- Gemini 5 (8 day mission)
 - Visual Tester in-flight
 - Visual acuity measurement program
 - Large rectangles at ground sites in Texas and Australia.
 - No changes noted in astronaut visual acuity postflight.
 - Duntley et al, 1966

- Apollo
 - Retinal vascular photography reveals retinal vessels “decreased in size” at 3.5 hours into flight.
 - 100% oxygen atmosphere
 - No visual acuity changes
 - Hawkins and Zieglschmid, 1975
<table>
<thead>
<tr>
<th>Shuttle</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10-14 day missions</td>
</tr>
<tr>
<td>• Anecdotal reports of vision changes, but return to baseline.</td>
</tr>
<tr>
<td>• 1 astronaut with bilateral lens implants</td>
</tr>
<tr>
<td>• No optic disc edema cases, but an occasional choroidal fold.</td>
</tr>
<tr>
<td>• 122 crewmembers between 1995 and 1998, 15% indicated decrements in near vision on orbit. Returns to baseline.</td>
</tr>
<tr>
<td>• Paloski et al 2008</td>
</tr>
</tbody>
</table>
Differences Between Historical and Present

<table>
<thead>
<tr>
<th>Historical Missions</th>
<th>Present Missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missions were 5 to 17 days generally (Skylab a notable exception)</td>
<td>Missions average 6 months on ISS</td>
</tr>
<tr>
<td>Astronaut age was mean of 38</td>
<td>Astronaut mean age 46.7</td>
</tr>
<tr>
<td>MRI and OCT not available</td>
<td>MRI, OCT, Telemedicine fundoscopy</td>
</tr>
<tr>
<td>Spacecraft ranged from 5.0 psi to 10.7 psi to 14.7 psi with varying oxygen concentrations</td>
<td>14.7 psi, 21% oxygen</td>
</tr>
<tr>
<td></td>
<td>Robust exercise suite</td>
</tr>
</tbody>
</table>
Astronauts experience a spectrum of adaptations in flight and post flight.

- Balance disorders
- Cardiovascular de-conditioning
- Decreased immune function
- Muscle atrophy
- Bone loss

Exposures:
- Launch & Landing Loads
- Microgravity
- Closed Environment (air and water)
- Confined Habitat
- Radiation Exposure

- Neurovestibular
- Cardiovascular
- Skeletal
- Muscular
- Immunological
- Nutritional
- Behavioral
Time Course of Physiological Changes During Weightlessness

![Graph showing the time course of physiological changes during weightlessness.](image)

- Neurovestibular System
- Fluids and Electrolytes
- Cardiovascular System
- Red Blood Cell Mass
- Bone and Calcium Metabolism
- Lean Body Mass
- Radiation Effects

Clinical Horizon

Time Scale (Months)

Point of Adaptation
Physiological & Psychosocial Manifestations Associated with Space Flight

Bone
- Bone mineral content
- Bone mineral density
- Urinary calcium
- Renal stone risk

Skeletal Muscle
- Skeletal muscle mass
- Skeletal muscle strength
- Skeletal muscle endurance
- Skeletal muscle capillary density

Neurosensory
- Vestibular disturbances
- Space motion sickness
- Sensorimotor function
- Postural & locomotor stability

GI/Pharmacokinetics
- GI motility and PK

Cardiovascular
- Fluid volume
- Orthostatic tolerance
- Aerobic capacity
- Arrhythmias

Psychosocial
- Team issues
- Confinement issues
- Fatigue
- Stress
- Errors
- Cognitive Function

Environmental
- CO2 (2-5 mmHg)*
- Hearing loss due to acoustics
- Radiation exposure
- Risk of cataracts/cancers
- Skin irritations due to microbial growths

*Note: *CO2 levels in space are typically maintained at these levels to simulate Earth’s atmosphere.*
Biomedical Data

• Data Collected via Medical Requirements
• Assessments of:
 – Bone
 – Cardiovascular
 – Aerobic Fitness
 – Sensory Motor
 – Functional Fitness
 – Nutritional Status
International Space Station
Medical Requirements collect physiological, medical and environmental data

Data can be used to assess the individual or the population
An example of a spaceflight adaptation that is well described but still lacks understanding of time course, recovery, and long term risk.

Sources: L. Mosekilde; SL Bonnick; P Crompton
ISS Exercise Hardware Availability Timeline

- **CEVIS Assembly**:
 - Restricted to arm ergometry

- **I-RED Assembly**: (additional details placed near the end of the timeline)
 - SchRED replaces I-RED

- **TVIS Assembly**: (additional details placed near the end of the timeline)
 - Incorrect thimble on new cord
 - 7th fwd stbd roller deteriorated

Legend:
- **Green** = Nominal availability
- **Yellow** = Restricted use
- **Red** = No availability

Timeline:
- EXP1
- EXP2
- EXP3
- EXP4
- EXP5
- EXP6
- EXP7
- EXP8
- EXP9
- EXP10
- EXP11
- EXP12
- EXP13
- EXP14
- EXP15
- EXP16

Key Dates:
- 10/00
- 03/01
- 08/01
- 12/01
- 06/02
- 11/02
- 04/03
- 10/03
- 04/04
- 10/04
- 04/05
- 09/05
- 03/06
- 09/06
- 04/07
- 10/07
Countermeasures

Research

Operational
• **Visual Impairment and Intracranial Pressure (VIIP)**

• **What is the problem?**
 - Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight

• **What is the risk?**
 - Given that all astronauts experience a microgravity-induced cephalad fluid shift and that both symptomatic and asymptomatic individuals have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts have some degree of idiopathic intracranial hypertension. Those that are susceptible (due to eye architecture, anatomy, narrow disc, etc.) have a high likelihood of developing either choroidal folds or papilledema, and the degree of edema will determine impairment and long-term or permanent vision loss.
A consequence of human spaceflight

• Visual Impairment and Intracranial Pressure (VIIP)
 – Operational processes (medical requirement) put in place to diagnose and manage 2008 (fundoscope and eye ultrasound)
 – Sentinel case found retrospectively (2005; Exp 11)
 – Integrated approach kicked off to address the issue: 2010
 – Research and Clinical Advisory Panel formulated in 2011
 – Occupational Health Research Protocol developed 2012
 – 9 Studies funded in 2012
Incidence rate of VIIP per the CPG classifications
36 long duration US astronauts
21 Evaluated as of 7/2012

These crewmembers did not have MRIs, OCTs or cycloplegic refraction – NASA is in the process of obtaining this information/evaluation

21 crew members have been evaluated
15 have symptoms – 15/21 = 71%
Class 3 and 4 – 5/21 = 24%
VIIP: A Three-Part Story

1. **The Vascular System**
 - [Image of vascular system]
 - **Demographic**
 - Gender
 - Age
 - Race
 - **Body Composition**
 - Height
 - Weight
 - % Lean Body Mass
 - % Fat Body Mass
 - **Cardiac**
 - Resting Blood pressure
 - Resting Cardiac output
 - **Biochemistry**
 - Homocysteine
 - Lipids (LDL, HDL, TGs)
 - Serum Insulin
 - HbA1c
 - Fasting serum glucose
 - **Fitness**
 - MVO2 (max oxygen uptake)

2. **The Brain**
 - MRI Intracranial (Pre/Post)
 - Peak CSF flow
 - CSF Production
 - Glove Flattening
 - Globe Axial Length
 - Optic Nerve Tortuosity
 - Ultrasound (Pre/In/Post)
 - ONSD
 - Nerve/Sheath Ratio
 - **Environmental**
 - CO2 Levels
 - MRI Intracranial (Pre/Post)
 - Peak CSF flow
 - CSF Production
 - Glove Flattening
 - Globe Axial Length
 - Optic Nerve Tortuosity
 - Ultrasound (Pre/In/Post)
 - ONSD
 - Nerve/Sheath Ratio
 - **Environmental**
 - CO2 Levels

3. **The Eye**
 - Intraocular pressure
 - Corneal Thickness
 - Visual acuity (Pre/In/Post)
 - Refractive error (Pre/Post)
 - Optic Disc: Cup ratio (Pre/Post)
 - OCT (Pre/Post)
 - RNFL
 - RPE angle
 - Optic nerve head
 - Choroidal Folds
 - High Res Retinal Photography
 - Retinal hemorrhages
 - Cotton wool spots
 - Optical Biometry (Pre/Post)
 - Globe axial length
Blood Vessel Compliance

\[C = \frac{\Delta V}{\Delta P} \]

Venous compliance is approximately 30 times larger than arterial compliance.

Starling Equation:

hydrostatic and **oncotic** forces (the so-called **Starling forces**) in the movement of fluid across **capillary membranes**

The Starling equation reads as follows:

\[J_v = K_f([P_c - P_i] - \sigma[\pi_c - \pi_i]) \]

http://en.wikipedia.org/wiki/Starling_equation#cite_note-1
Fluid Shifts during Space Flight

In space, the fluid tends to redistribute toward the chest and upper body. At this point, the body detects a “flood” in and around the heart. The body rids itself of this perceived “excess” fluid. The body functions with less fluid and the heart becomes smaller.

On Earth, gravity exerts a downward force to keep fluids flowing to the lower body. Upon return to Earth, gravity again pulls the fluid downward, but there is not enough fluid to function normally on Earth.

Lujan and White (1995)
Redistribution of Venous Pressures From 1G to 0G

- Cranium is rigid
- Venous congestion
- Obligate arterial flow
- Transcapillary leak
- ++ICP~30-40

Standing 1G

Venous pressure (mmHg)

-20

0

15-20

7-9

0G

Venous pressure (mmHg)

9.8m/s²

Background:
• 15 known “clinical cases” (of 36 long duration crew members)
 • Each with different degrees of symptoms
 • Does not currently include data from international partners
 • Current assessment of Russian participation underway

Hyperopic Shifts
- Up to +1.75 diopters

Globe Flattening

Choroidal Folds
parallel grooves in the posterior pole

Optic Disc Edema (swelling)

Altered Blood flow “cotton wool” spots

Increased Optic Nerve Sheath Diameter

Scotoma
Altered/Disrupted Visual Field

For NASA Internal Use Only
Current Hypothesis

1. Fluid Shift due to Microgravity

- Fluid shift causes increased intracranial pressure (ICP) (?)
- Hyperopic Shifts
 - Up to +1.75 diopters
- Optic Disc Edema (swelling)
- Choroidal Folds
 - Parallel grooves in the posterior pole
- Globe Flattening

2. Fluid shift causes increased intracranial pressure (ICP) (?)

3. ICP transmitted to optic nerve and eye

- Increased Optic Nerve Sheath Diameter

[Images and diagrams illustrating various medical conditions and their impacts, including swelling and eye changes due to microgravity.]
Potential for Serious Functional Impairment:

Hyperopia

Hyperopia, or farsightedness, is a condition of the eye where incoming rays of light impinge on the retina before converging into a focused image, resulting in difficulty seeing nearby objects clearly.

Image can be located at:
http://medical-dictionary.thefreedictionary.com/hyperopia

Changes in visual acuity are assessed with regular vision testing on orbit.
VIIP- Hardware
On – Orbit Ocular Measures

- Ultrasound is used to track optic nerve sheath diameter and globe flattening pre-, in-, and post flight

- Current fundoscope (PanOptic) can not detect choroidal folds

- New Hardware:
 - Fundoscope with better resolution (ISS CR Approved June 2012)
 - Will give qualitative data
 - Optical Coherence Tomography (OCT)
 - Will give quantitative data: progression of choroidal folds and nerve fiber layer changes

- Optical Coherence Tomography (OCT) measures

- Postflight OD
 - Inferior
 - Superior

- Postflight OS
 - Inferior
 - Superior

- Increased Optic Nerve Sheath Diameter

- Choroidal Folds - parallel grooves in the back of the eye

- Optic Disc Edema

- Altered Blood flow
 - “cotton wool” spots
Key Brain Areas Potentially Affected by Fluid Shift

Interstitial fluid

CSF Production

CSF Resorption
(AG-Venous/Lymphatic)

Venous Congestion
The Brain is an Expansile Vascular Organ Within a Rigid Cranium: An swollen brain can impair blood flow to itself
Expanding Brain Parenchyma & Cerebellum Compresses Transverse Sinus
Vision Impairment & Intracranial Pressure Risk Update
Case Definition for Spaceflight-Induced Intracranial Hypertension

Least Severe Symptoms

Class 0
- < .50 diopter cycloplegic refractive change
- No evidence of papilledema, nerve sheath distention, choroidal folds, globe flattening, scotoma or cotton wool spots compared to baseline.

Class 1
- Refractive changes ≥ .50 diopter cycloplegic refractive change and/or cotton wool spot
- No evidence of papilledema, nerve sheath distention, choroidal folds, globe flattening, scotoma compared to baseline.
- CSF opening pressure (if measured) ≤ 25 cmH2O

Treatment: repeat OCT, cycloplegic refraction, fundus exam and threshold visual field every 4 - 6 weeks x 6 months, repeat MRI in 6 months

Class 2
- Class 1 plus:
 - Choroidal folds and/or optic nerve sheath distension and/or globe flattening and/or scotoma
 - No evidence of papilledema
 - CSF opening pressure ≤ 25 cm H2O (if measured)

Treatment: Repeat OCT, cycloplegic refraction, fundus exam and threshold visual field every 4 - 6 weeks x 6 months, repeat MRI in 6 months

Most Severe Symptoms

Class 3
- Class 2 plus:
 - Papilledema of Grade 0-2.

Treatment: repeat OCT, cycloplegic refraction, fundus exam and threshold visual field in 6 weeks

Class 4
- Class 3 plus:
 - Papilledema Grade 2 or above.
 - Presenting symptoms of new headache, pulsatile tinnitus and/or transient visual obscurations
 - CSF opening pressure >25 cm H2O

Institute treatment protocol as per CPG – LP, repeat MRIs, pharmaceutical intervention
Integrated Pre/In/Post-Flight VIIP Medical and Research Testing

Preflight Exams

Acceptable up to L-365 days

L-365
L-90/45

L-90/45 days

L+30 & R-30, L+100 if requested (+/- 7 days) & as clinically indicated

L+30 & L+100, (+/- 7 days) & as clinically indicated

L+10, 30, 60, 100 & R-30, (+/- 7 days)

Post flight Exams

R+1 to R+3 (or as soon as possible) 30, 90, 180, 365

Research Protocol

MRI
Of Brain and Orbits Without Contrast

Ultrasound
Eye/Orbit

Fundoscopy - PanOptic Ophthalmoscope

Tonometry

Visual Acuity
Including Amsler Grid Testing

Other Tests - biomicroscopy (slit lamp), high resolution retinal photography, OCT (high resolution), and A-Scan.

Blood Pressure

Vascular Compliance
Clinical Implications

- Potential disability secondary to vision loss in astronauts susceptible to optic disc edema or choroidal folds
- Potential for long-term sequelae due to optic nerve cells ischemia (visual field defect or loss)
- Potential effect on white matter (senility, dementia, etc.)

- Decreased functional ability due to IIH
- Unknown contribution to space motion sickness, asthenia, or functional impairments
- Potential to worsen with repetitive flights or long term space missions
Questions?