Spectroscopic Chemical Analysis Methods and Apparatus

Ames Research Center, Moffett Field, California

This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light-emitting devices, and hollow cathode metal ion lasers.

Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (≈45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electrochromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods.

This design provides an electron-beam-pumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used.

This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.

This work was done by William F. Hug and Ray D. Reid of Photon Systems, Inc. for Ames Research Center. Further information is contained in a TSP (see page 1). ARC-15298-1

Low Average Sidelobe Slot Array Antennas for Radiometer Applications

Slot arrays are used in radar, remote sensing, and communications applications.

NASA’s Jet Propulsion Laboratory, Pasadena, California

In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem.

An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott’s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the
The element spacing was obtained to provide the required beamwidth and close to a null in the E-plane end-fire direction. Because of the alternating slot offsets, grating lobes called butterfly lobes are produced in non-principal planes close to the H-plane. An attempt to reduce the influence of such grating lobes resulted in a symmetric design.

This work was done by Sembiam Renganathan, Mark S. Zawadzki, and Richard E. Hodges of Caltech for NASA’s Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov. NPO-48481

Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

Goddard Space Flight Center, Greenbelt, Maryland

To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde.

Blimps and other similar lifting systems are used to support tethersondes — meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used.

The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tethersondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds.

At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic anemometer is unique, as is the addition of the motion correction sensors.

This work was done by John Bognar of Anasphere, Inc. for Goddard Space Flight Center. Further information is contained in a TSP (see page 1), GSC-16310-1

Water Treatment Systems for Long Spaceflights

Ames Research Center, Moffett Field, California

Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated.

These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and non-threatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard.

These needs are met by a system that provides a contaminant treatment pouch, referred to as a “urine cell” or “contaminant cell,” that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw