Technology Focus: Data Acquisition

Visual System for Browsing, Analysis, and Retrieval of Data (ViSBARD)

Goddard Space Flight Center, Greenbelt, Maryland

ViSBARD software provides a way of visualizing multiple vector and scalar quantities as measured by many spacecraft at once. The data are displayed three-dimensionally along the orbits that may be shown either as connected lines or as points. The data display allows the rapid determination of vector configurations, correlations among many measurements at multiple points, and global relationships. Things such as vector field rotations and dozens of simultaneous variables are very difficult to see in (complementary) panel plot representations.

The current and next generations of space physics missions require a means to display from tens to hundreds of time series of data in such a way that the mind can comprehend them for the purposes of browsing data, retrieving them in directly useful form, and analyzing them in a global context. Sets of many spacecraft, each carrying many instruments yielding nearly continuous data at high time resolution, have become one of the most effective ways to make progress in understanding the extended, ionized (plasma) atmosphere of the Earth and the Sun. For large collections of data to be effective, they must be extremely readily accessible, with simple, comprehensible overviews of what is available. ViSBARD provides a means to answer these concerns.

The ViSBARD package also acts as a remote repository browser; an interface to a Virtual Observatory. Therefore, data can be pulled directly into the application, as opposed to searching for it and downloading separately.

This work was done by Aaron Roberts and Ryan Boller of Goddard Space Flight Center, and Carl Cornwell of Aquilent, Inc. Further information is contained in a TSP (see page 1). GSC-15744-1

Time-Domain Terahertz Computed Axial Tomography NDE System

3D terahertz tomography can characterize aging, durability, and flaw conditions in materials for thermal protection systems and composite overwrap pressure vessels.

John H. Glenn Research Center, Cleveland, Ohio

NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation’s airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical.

A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFU tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFU tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gantry was designed and constructed, and then integrated with a T-Ray 4000® control unit.

![The CT TD-Thz System testbed with the gantry (left) and TD-Thz control unit (right).](https://ntrs.nasa.gov/search.jsp?R=20130008776 2019-11-14T14:30:43+00:00Z)
A Tracking Sun Photometer Without Moving Parts
This reliable instrument is used to collect valuable information about the atmosphere.

Ames Research Center, Moffett Field, California

This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes.

The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be self-calibrating throughout the year. Data products would be down-welling flux,

Adaptive Sampling of Time Series During Remote Exploration
The challenge is addressed as an “active learning” problem.

NASA’s Jet Propulsion Laboratory, Pasadena, California

This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its data points lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared.

Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change.

An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an “active learning” problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonstationary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches.

Most common GP models are “stationary,” e.g., the covariance relationships are time-invariant. In such cases, information gain is independent of previously collected data, and the optimal solution can always be computed in advance. Information-optimal sampling of a stationary GP time series thus reduces to even spacing, and such models are not appropriate for tracking localized anomalies. Additionally, GP model inference can be computationally expensive.

This work was done by David R. Thompson of Caltech for NASA’s Jet Propulsion Laboratory. For more information, contact ioffice@jpl.nasa.gov. NPO-48430

The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (≈0.03 m³). The system reduced to practice a CT-THz system incorporating a COTS 80-pps/4kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the “chirped” scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THZ CT data.

This work was done by David Ziminars of Picometrix LLC, subsidiary of Advanced Photonix, Inc. (Amex: API) for Glenn Research Center. Further information is contained in a TSP (see page 1).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steven Fedor, Mail Stop 4–8, 2100 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18776-1.